纳米尺度下的神奇应用:LED、激光LD与量子点
纳米科技的研究范围很广,包括纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米机械加工学、纳米力学与纳米测量学等领域, 许多尖端的研究不断地在进行,让我们先来了解到底什么是纳米科技吧!
量子局限效应最明显的特征是纳米材料的尺寸愈小时,材料发光能量愈强,能量越强表示发光的波长愈短(蓝色),这个现象称为「蓝移(blue shift)」。 如图三所示,不同颜色的光波长不同,光的波长就是颜色,在可见光中红光的波长最长,绿光次之,蓝光最短,换句话说,当纳米材料的尺寸大,发光的能量较低,颜色为红光(波长最长);当纳米材料的尺寸变小,发光能量变强,颜色为绿光(波长次之);当纳米材料的尺寸更小,发光能量更强,颜色为蓝光(波长最短)。 图三 量子局限效应 二、LED与LD外延最关键的发光层:纳米薄膜与量子井 1、种类与特性 二维的纳米结构称为「纳米薄膜(Nano thin film)」,泛指厚度在100nm以下的薄膜,如图四(a)的LED结构所示,由于半导体材料具有特别的光电特性,因此常见的纳米薄膜大多是使用半导体材料制作而成,例如:硅、砷化镓、氮化镓或磷化铟等,具有优越的光电特性,可以应用在光电科技产业。 当我们将许多层不同材料的半导体纳米薄膜重迭在一起时,可以形成「量子井(Quantum well)」,例如:在砷化镓晶圆上分别成长砷化镓、砷化铟镓、砷化铝镓的纳米薄膜或是在蓝宝石上成长氮化镓、氮化铟镓、氮化铝镓的纳米薄膜,都是属于量子井结构,如图四(b)的量子井LED发光层结构所示,研究 显示 具有量子井结构的 LED发光二极管 或LD激光二极管元器件具有更好的发光效率。 图四 纳米薄膜与量子井的定义与应用
|

1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
文章点评