200833 |
2017-11-26 22:33 |
利用MATLAB光学仿真(1)
利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 B82SAV/O ['JIMcD 1、光疏射向光密 P`TJqJiY~ :/~TV clear /j$`Cq3I 6X[Mn2wYW close all (y!V0iy] :V
ZXI#([ n1=1,n2=1.45; vHM,_I{ hyVBQhk theta=0:0.1:90; z 8y.@<6 NGL,j\(~7 a=theta*pi/180; =.\PG[ rPUk%S rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); 7;3;8Q FX v!6IH rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); B'8T+qvA 2f0qfF tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); 49-wFF 1g>>{ y ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); e!oL!Zg h42dk(B figure(1) 'tn-o &@fW6},iW subplot(1,2,1); &h'NC%"v @r3,|tkrz plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) o|Kd\<rY Rg%Xy`gS legend('r_p','r_s','|r_p|','|r_s|') Mt\.?V: "9O8#i<Nr xlabel('\theta_i') Z}yd`7 N?><%fra ylabel('Amplitude') vpz l{ 0 LQ%tn title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) 0`$fs.4c YYF.0G} axis([0 90 -1 1]) K:b^@>XH =h,J!0Y grid on 'c#AGi9 (N?nOOQ subplot(1,2,2); %hi]oz ~mC>G 4y$a plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) dZuPR E'^ny4gL legend('t_p','t_s','|t_p|','|t_s|') DqA$%b
yyE hq?F81 xlabel('\theta_i') cK\'D 58t~? 2E ylabel('Amplitude') t@!A1Vr@ &Xh=bM'/%m title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) :
`,#z?Rk k,LaFe`W axis([0 90 0 1]) !*PX- Mo]aB:a grid on 85BB{T; A`1-c Rp=abs(rp).^2; CEJqo8ds +>Pq]{Uf1j Rs=abs(rs).^2; WF-^pfRq~ :PNhX2F Rn=(Rp+Rs)/2; K0\`0E^, #>2cfZ`6'J Tp=1-Rp; .J?RaH{i Iv/h1j> H Ts=1-Rs; d?><+!a \O)u' Bu Tn=(Tp+Ts)/2; U04)XfO;] Up*6K =Tny figure(2) Hk?E0. |;R-q8 subplot(1,2,1); 7e
/Kh)5G FYH^axpp plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) $YK~7!! :|Bzbn=N2 legend('R_p','R_s','R_n') |T{ZDJ+ vqo ~?9z[e xlabel('\theta_i') p7[&H | |