研究人员检测到目前为止测量得最小的力
科学日报报道,近日美国劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laboratory)和美国加州大学伯克利分校的研究人员检测到据称是目前所测量到的最小的力。结合激光和一种独特的光学捕获系统,后者能够提供一种超冷原子云,研究人员测量到大约42幺牛顿( yoctonewton)的力,一幺牛顿相当于10^ -24牛顿,一盎司的力大约有3 x 1023幺牛顿。 LEa:{s<: I2Q?7p
[attachment=57186] _{);n$ ` 研究人员测量到大约42幺牛顿的力 Vi-@z;k
“我们向位于高度精密的光学共振器内超冷原子云的质心运动施加了一个外力,并从光学上测量产生的运动。” 劳伦斯·伯克利国家实验室材料科学部门兼美国加州大学伯克利分校物理学院的物理学家丹·史丹博-库伦(Dan Stamper-Kurn)这样说道。“当推动力与原子云的振荡频率发生共振时,我们获得的敏感性与理论预测相一致,大约比标准量子极限(standard quantum limit,简称SQL)高四个因素,是目前为止可以进行的最敏感测量。” svgi!= v1rGq 丹·史丹博-库伦是这篇发表在期刊《科学》上的文章的联系作者。这篇名为《光学测量接近标准量子极限的力》的文章的其它合作作者包括西德尼·施瑞普勒(Sydney Schreppler)、尼古拉斯·斯佩特曼(Nicolas Spethmann)、内森·勃拉姆斯(Nathan Brahms)、蒂埃里·波特(Thierry Botter)和玛丽罗斯·巴里奥斯(Maryrose Barrios)。 q=(wK& `-2`UGB- 如果你想要证实引力波的存在,也就是爱因斯坦在广义相对论中预测的时空涟漪,或者如果你想要确定牛顿所提出的宏观层面的引力定律在微观层面上应用的程度,你需要检测和测量极其小的力和运动。例如,在激光干涉引力波天文台(LIGO),科学家们试图记录小至质子直径的1/1000的运动。 _< |