首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 5+\[x`  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, `CA-s  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? |b7 v(Hx  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? NNLZ38BV7  
) (unL`y  
;wwhW|A  
_TfG-Ae  
!#j y=A  
function z = zernfun(n,m,r,theta,nflag) };6[Byf  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [* ,k  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Wjc1EW!2x  
%   and angular frequency M, evaluated at positions (R,THETA) on the ~Mbo`:>(4v  
%   unit circle.  N is a vector of positive integers (including 0), and ,~u5SR  
%   M is a vector with the same number of elements as N.  Each element n[8ju,=  
%   k of M must be a positive integer, with possible values M(k) = -N(k) zs|R#?a=  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M }=X/*T  
%   and THETA is a vector of angles.  R and THETA must have the same LsH&`G^<  
%   length.  The output Z is a matrix with one column for every (N,M) A:PQIcR;V  
%   pair, and one row for every (R,THETA) pair. (jd)sf6Tj[  
% !2R~/Rg  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d 4w+5H" u  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KI)jP((  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral (8qD'(@  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H&\[iZ| -N  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2k;>nlVxX  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q%)da)0:c  
% c<-F_+[  
%   The Zernike functions are an orthogonal basis on the unit circle. q}P< Ejq}  
%   They are used in disciplines such as astronomy, optics, and lx _jy>$}r  
%   optometry to describe functions on a circular domain. kx&Xk0F_g  
% )d5H v2/0  
%   The following table lists the first 15 Zernike functions. T n.Cj5  
% !iUFD*~r~  
%       n    m    Zernike function           Normalization {R<0 'JU  
%       -------------------------------------------------- 2L"$p?  
%       0    0    1                                 1 &XAG| #  
%       1    1    r * cos(theta)                    2 ;D.a |(Q  
%       1   -1    r * sin(theta)                    2 WO$9Svh8  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) Ey<vvZ  
%       2    0    (2*r^2 - 1)                    sqrt(3) ?.Mw  
%       2    2    r^2 * sin(2*theta)             sqrt(6) qd$Y"~Mco  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) Xi"+{6  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) JL gk?  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Wy1#K)LRb  
%       3    3    r^3 * sin(3*theta)             sqrt(8) "Kky|(EQ$$  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) A+Uil\%  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !bs{/?  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) RW| LL@r  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s zBlyT  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 6r  
%       -------------------------------------------------- U9^o"vT  
% ~*"]XE?M  
%   Example 1: 6{Y3-Pxg  
% <ua`WRQr  
%       % Display the Zernike function Z(n=5,m=1) {l/j?1Dxq  
%       x = -1:0.01:1; rXl ~D!  
%       [X,Y] = meshgrid(x,x); ueI1O/Mi  
%       [theta,r] = cart2pol(X,Y); MI8f(ZJK5  
%       idx = r<=1; +9mE1$C  
%       z = nan(size(X)); I ACpUB  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); t6-He~  
%       figure ]`@= ;w  
%       pcolor(x,x,z), shading interp t!}QG"ma  
%       axis square, colorbar : L}Fm2^  
%       title('Zernike function Z_5^1(r,\theta)') bm/pLC6%.  
% <X>lA  
%   Example 2: ~)J]`el,Q  
% D*7JE  
%       % Display the first 10 Zernike functions Y]>!uwn  
%       x = -1:0.01:1; (41BUX  
%       [X,Y] = meshgrid(x,x); Gg'sgn   
%       [theta,r] = cart2pol(X,Y); 3JhT  
%       idx = r<=1; vbFi# |EU  
%       z = nan(size(X)); o8<0#W@S  
%       n = [0  1  1  2  2  2  3  3  3  3]; %Xe#'qNq)  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; War<a#0  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; kH;DAphk  
%       y = zernfun(n,m,r(idx),theta(idx)); 6(#fGH&[  
%       figure('Units','normalized') Q=B>Q  
%       for k = 1:10 k OYF]^uJ  
%           z(idx) = y(:,k); 8w,+Y]X<P[  
%           subplot(4,7,Nplot(k)) "&$ [@c  
%           pcolor(x,x,z), shading interp <jt_<p +  
%           set(gca,'XTick',[],'YTick',[]) 9E`WZo^.  
%           axis square hM_0/o-  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QuB`}rfLf  
%       end 5(9SIj^O  
% kSL7WQe?j  
%   See also ZERNPOL, ZERNFUN2. kHWW\?O  
FYOQ}N  
4o/}KUu(*  
%   Paul Fricker 11/13/2006 IBP3  
JAt$WW{  
:?uUh  
hk5[ N=  
c> SFt tbU  
% Check and prepare the inputs: 4lM)ZDg  
% ----------------------------- X667*L^  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J#1-Le8@  
    error('zernfun:NMvectors','N and M must be vectors.') ot%^FvQ[c  
end "+0Yhr?  
ON,sN  
MWGs:tpL4  
if length(n)~=length(m) ;+ -@AYl  
    error('zernfun:NMlength','N and M must be the same length.') u"$=:GK  
end _cRCG1CJ  
9N+3S2sBx&  
7lLh4__;`6  
n = n(:); z_i (o  
m = m(:); RZY[DoF8u  
if any(mod(n-m,2)) Oc,E\~  
    error('zernfun:NMmultiplesof2', ... g36:OK"  
          'All N and M must differ by multiples of 2 (including 0).') Ru&>8Ln0  
end Ux/|D_rlf  
s'7PHP)LOJ  
|]M|I X8 o  
if any(m>n) "_f~8f`y  
    error('zernfun:MlessthanN', ... k^H&IS!  
          'Each M must be less than or equal to its corresponding N.') B|f =hlY  
end 3-=f@uH!  
Za110oF  
C {*' p+f  
if any( r>1 | r<0 ) /VmtQ{KTt+  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') @sr~&YhA  
end "^froQ{"T  
\4`:~c  
xS'Kr.S  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5V $H?MW>  
    error('zernfun:RTHvector','R and THETA must be vectors.') = :/4)  
end !=3Ce3-  
Nc da~h Q  
bo-AM]  
r = r(:); /g`!Zn8a  
theta = theta(:); '+s?\X4VC  
length_r = length(r); W?:e4:Q  
if length_r~=length(theta) [yhK4A  
    error('zernfun:RTHlength', ... K\trT!I  
          'The number of R- and THETA-values must be equal.') V+$^4Ht  
end {V^|9j:\K  
/ucS*m:<x  
Oxp!G7qfo  
% Check normalization: 5r` x\  
% -------------------- '% if< /  
if nargin==5 && ischar(nflag) '8"nXuL-  
    isnorm = strcmpi(nflag,'norm'); L%`MoTpK q  
    if ~isnorm jhJ'fI  
        error('zernfun:normalization','Unrecognized normalization flag.') RxYC]R^78  
    end W%wc@.P  
else 9 _b_O T  
    isnorm = false; W; zzc1v  
end 1\X_B`xwD  
%HD0N&  
Y-s6Z \  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /8? u2 q  
% Compute the Zernike Polynomials 6QYHPz  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ( }RJW:  
]~@uStHn  
u_=^Bd   
% Determine the required powers of r: VvUP;o&/  
% ----------------------------------- 0t?g!  
m_abs = abs(m); 0aqq*e'c  
rpowers = []; o}=c (u  
for j = 1:length(n) [y&uc  
    rpowers = [rpowers m_abs(j):2:n(j)]; IcA]B?+  
end 3De(:c)@  
rpowers = unique(rpowers); $Xr4=9(|7  
+7 mUX  
}F';"ybrU)  
% Pre-compute the values of r raised to the required powers, W) ?s''WE;  
% and compile them in a matrix: bcYGkvGbO  
% ----------------------------- ^Z+p_;J$p  
if rpowers(1)==0 <64#J9T^  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o&)v{q  
    rpowern = cat(2,rpowern{:}); 7P:/ (P  
    rpowern = [ones(length_r,1) rpowern]; Se.qft?D%(  
else T`2a)  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *pYawT  
    rpowern = cat(2,rpowern{:}); d-jZ5nl(  
end =>- W!Of  
N *,[(q  
jG%J.u^k  
% Compute the values of the polynomials: tkP& =$  
% -------------------------------------- (7C$'T-ZK  
y = zeros(length_r,length(n)); |)OC1=As  
for j = 1:length(n) cp&1yB   
    s = 0:(n(j)-m_abs(j))/2; |F +n7  
    pows = n(j):-2:m_abs(j); s{:Thgv,9  
    for k = length(s):-1:1 -U{!'e8YiN  
        p = (1-2*mod(s(k),2))* ... >?jmeD3u  
                   prod(2:(n(j)-s(k)))/              ... F8xu&Vk0:  
                   prod(2:s(k))/                     ... a5/r|BiBK  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cv_t2m  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); 2S//5@~_m  
        idx = (pows(k)==rpowers); YbF}>1/"  
        y(:,j) = y(:,j) + p*rpowern(:,idx); >@EwfM4[e  
    end 63'L58O  
     3uL$+F  
    if isnorm y]g5S-G  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %ed TW[C`  
    end k)zBw(wr  
end AZ SaI  
% END: Compute the Zernike Polynomials b_)SMAsO7  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8l<~zIoO  
E(*S]Z[  
p.5 *`, )  
% Compute the Zernike functions: 65GC7 >[  
% ------------------------------ PHMp, z8  
idx_pos = m>0; _TyQC1 d  
idx_neg = m<0; m4^VlE,`Dh  
CoV @{Pi  
1[-RIN;U8  
z = y; |!J_3*6$>*  
if any(idx_pos)  CVZ 4:p  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r;O?`~2'4  
end [6?x 6_M  
if any(idx_neg) F.D6O[pZ  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); knzQ)iv&&  
end u4xJ-Vu  
Ls*Vz,3!5  
tPDB'S:&3  
% EOF zernfun 'cY @Dqg1  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  87nsWBe  
6.4,Qae9E  
DDE还是手动输入的呢? .gI9jRdKw  
,0$b8lb;x/  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计