首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F2N"aQ&  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, G5}_NS/  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7-744wV}Z  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? UmR)L!QT8  
<LbLMV  
*!QmYH5r0  
,6^<Vg  
KuR]X``2  
function z = zernfun(n,m,r,theta,nflag) )!8q JQD  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?C|'GkT  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '2^}de!E  
%   and angular frequency M, evaluated at positions (R,THETA) on the -.D?Z8e  
%   unit circle.  N is a vector of positive integers (including 0), and }B0[S_mw  
%   M is a vector with the same number of elements as N.  Each element +XWTu!  
%   k of M must be a positive integer, with possible values M(k) = -N(k) lR?y tIY  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ChiIQWFE  
%   and THETA is a vector of angles.  R and THETA must have the same w B)y@w4k  
%   length.  The output Z is a matrix with one column for every (N,M) IdmP!(u  
%   pair, and one row for every (R,THETA) pair. g QBS#NY  
% e{x>u(  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike oCT,v0+4O  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a6 Vfd&  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral 72l:[5ccR  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, P zJ(Q  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ii0\Skb  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j2G^sj"|  
% "51/,D  
%   The Zernike functions are an orthogonal basis on the unit circle. bF _]j/  
%   They are used in disciplines such as astronomy, optics, and kFjv'[Y1N  
%   optometry to describe functions on a circular domain. _hY6 NMw  
% sc*R:"  
%   The following table lists the first 15 Zernike functions. S)hDsf.I  
% Zh8\B)0unn  
%       n    m    Zernike function           Normalization []>rYZ9bv  
%       -------------------------------------------------- N8 2 6xvA  
%       0    0    1                                 1 k| OM?\  
%       1    1    r * cos(theta)                    2 f0P,j~]  
%       1   -1    r * sin(theta)                    2 ULK] ' Rn  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) > TYDkEs0  
%       2    0    (2*r^2 - 1)                    sqrt(3) (BY 0b%^  
%       2    2    r^2 * sin(2*theta)             sqrt(6) HzM\<YD  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) "G%S m")  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) cW^LmA  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `)cI^!  
%       3    3    r^3 * sin(3*theta)             sqrt(8) ) f3A\^  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) \PS]c9@,rc  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  )M;~j  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3$"V,_TBZ  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #`y[75<n  
%       4    4    r^4 * sin(4*theta)             sqrt(10) n[>hJ6  
%       -------------------------------------------------- QPm[4Fd{G  
% faOiNR7;h  
%   Example 1: b'pwRKpx  
% i6yA>#^  
%       % Display the Zernike function Z(n=5,m=1) z#gebr~_\  
%       x = -1:0.01:1; bIm4s  
%       [X,Y] = meshgrid(x,x); 5QqU.9M  
%       [theta,r] = cart2pol(X,Y); |kZ!-?9Z  
%       idx = r<=1; 2#NnA3l]x%  
%       z = nan(size(X)); k2eKs*WLC  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); @7}XBg[pI  
%       figure !,ODczWvh  
%       pcolor(x,x,z), shading interp TDw~sxtv&  
%       axis square, colorbar ~Bl,_?CBr  
%       title('Zernike function Z_5^1(r,\theta)') cq>J]35  
% q25p3  
%   Example 2: ,q%X`F rc  
% %3dc_YPS  
%       % Display the first 10 Zernike functions r.)n>  
%       x = -1:0.01:1; 50 w$PW  
%       [X,Y] = meshgrid(x,x); :.=:N%3[  
%       [theta,r] = cart2pol(X,Y); l!}gWd,H  
%       idx = r<=1; H, 3Bf  
%       z = nan(size(X)); ([<{RjPb  
%       n = [0  1  1  2  2  2  3  3  3  3]; -W6@[5c  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6<@ mB Z  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; Mx w-f4j  
%       y = zernfun(n,m,r(idx),theta(idx)); R@grY:h  
%       figure('Units','normalized') xJ<RQCW$  
%       for k = 1:10 N5)H(<}  
%           z(idx) = y(:,k); l\0PwD  
%           subplot(4,7,Nplot(k))  6 wd  
%           pcolor(x,x,z), shading interp psvc,V_*  
%           set(gca,'XTick',[],'YTick',[]) L [PqEN\i  
%           axis square B Hp>(7,  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m\*ca3$  
%       end o#"yFP1  
% G8]{pbX  
%   See also ZERNPOL, ZERNFUN2. /V0Put  
D(Z#um8n  
\RDqW+,  
%   Paul Fricker 11/13/2006 -hfDf{QN  
rhzI*nwOT  
5Bq;Vb  
ug{sQyLN  
[Cd#<Te3  
% Check and prepare the inputs: dH0>lV  
% ----------------------------- wY8Vc"  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p]X+#I<  
    error('zernfun:NMvectors','N and M must be vectors.') Uf_mwEE  
end E_ 30)"]  
rc:UG "[  
B^M L}$  
if length(n)~=length(m) nzxHd7NIZ  
    error('zernfun:NMlength','N and M must be the same length.') ?!F<xi:  
end ?mV2|;  
%iPIgma  
~eTp( XG  
n = n(:); !<h9XccN  
m = m(:); IecD41%  
if any(mod(n-m,2)) }x{1{Bw>Y  
    error('zernfun:NMmultiplesof2', ... +R$;LtR  
          'All N and M must differ by multiples of 2 (including 0).') \{rhHb\|h  
end 0n X5Vo  
)jwovS?V  
CNj |vYj  
if any(m>n) 6V9r[,n  
    error('zernfun:MlessthanN', ... kyJKai  
          'Each M must be less than or equal to its corresponding N.') CXu$0DQ(  
end  j AoI`J  
y]i} j,e0L  
^eoW+OxH  
if any( r>1 | r<0 ) .2P3 !KCL  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') tOF8v8Hd  
end 1A(f_ 0,.Q  
i5WO)9Us  
taVK&ohWx  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |J-tU)|1vl  
    error('zernfun:RTHvector','R and THETA must be vectors.') V LeYO5'L  
end bQ?Vh@j(M  
$Y$s*h_-/<  
lZ"C~B}9:I  
r = r(:); 7 mA3&<&q  
theta = theta(:); \(?d2$0m  
length_r = length(r); / gaC  
if length_r~=length(theta) KKg\n^  
    error('zernfun:RTHlength', ... 0aGauG[  
          'The number of R- and THETA-values must be equal.') :1UOT'_  
end >_\]c-~<  
D!)h92CIDm  
(t"|XSF  
% Check normalization: %0u5d$bq  
% -------------------- Z0~,cO8~  
if nargin==5 && ischar(nflag) {)Zz4  
    isnorm = strcmpi(nflag,'norm'); /K,@{__JP  
    if ~isnorm {poTA+i  
        error('zernfun:normalization','Unrecognized normalization flag.') qIy9{LF  
    end bL:+(/:  
else |<8g 2A{X  
    isnorm = false; -&y&b-  
end }6__E;h#J  
#LYx;[D6  
3=Xvl 58k  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~vZ1.y4  
% Compute the Zernike Polynomials 0KZsWlD:L  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {!4ZRNy(k  
'F1<m^  
Ac>G F  
% Determine the required powers of r: P6'0:M@5  
% ----------------------------------- `1 Tg8  
m_abs = abs(m); )qWO}]F  
rpowers = []; 4 tt=u]:  
for j = 1:length(n) {X\FS   
    rpowers = [rpowers m_abs(j):2:n(j)]; V2 }.X+u&<  
end ' b,zE[Q  
rpowers = unique(rpowers); X=k|SayE8  
~c=*Y=)LG  
-,"eN}P^  
% Pre-compute the values of r raised to the required powers, Je#3   
% and compile them in a matrix: tgrZs8?  
% ----------------------------- 4Gh%PUV#  
if rpowers(1)==0 K!G/iz9SB  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7ws[Rp8  
    rpowern = cat(2,rpowern{:}); ;Ac!"_N?7  
    rpowern = [ones(length_r,1) rpowern]; ub{Yg5{3S\  
else Nu}Zsb|{  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); i:^ 8zW  
    rpowern = cat(2,rpowern{:}); < $rXQ  
end ( 2KopL  
Ed"p|5~  
.18MMzdN  
% Compute the values of the polynomials: tH4+S?PI  
% -------------------------------------- {<Vw55)#0Q  
y = zeros(length_r,length(n)); 8r jiW#  
for j = 1:length(n) lHgmljn5u  
    s = 0:(n(j)-m_abs(j))/2; _4t  
    pows = n(j):-2:m_abs(j); Znh<r[p<  
    for k = length(s):-1:1 DM !B@  
        p = (1-2*mod(s(k),2))* ... YR~)07  
                   prod(2:(n(j)-s(k)))/              ... R M`iOV,Y  
                   prod(2:s(k))/                     ... OxVe}Fym  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *2I@_b6&  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); n\4sNoFI  
        idx = (pows(k)==rpowers); i"y @Aj!7  
        y(:,j) = y(:,j) + p*rpowern(:,idx); eq36mIo  
    end /. @"wAw:  
     gs=(h*  
    if isnorm 2o`L^^  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5SHZRF(. 2  
    end h\OMWJ~  
end qmGLc~M0  
% END: Compute the Zernike Polynomials "[\TL#/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HS 1zA  
<SNu`,/I  
p!~V@l  
% Compute the Zernike functions: ywbdV-t/  
% ------------------------------ lyyR yFfQ  
idx_pos = m>0; 0\yA6`}!  
idx_neg = m<0; kR;Hb3hb  
(%iCP/E3  
'u4TI=[6  
z = y; - |&&lxrwh  
if any(idx_pos) QetyuhS~  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ouc$M2m0!  
end .0'FW!;FV  
if any(idx_neg) @L5s.]vg=  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 'C<4{agS  
end `-82u :"  
W v!%'IB  
j.7BoV  
% EOF zernfun D1 f}g  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  mL]a_S{H  
'j(F=9)  
DDE还是手动输入的呢? S>V+IKW;(  
b .|k j  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计