首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> 如何从zernike矩中提取出zernike系数啊 [点此返回论坛查看本帖完整版本] [打印本页]

jssylttc 2012-04-23 19:23

如何从zernike矩中提取出zernike系数啊

下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :iEIo7B  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, E7`Q =4@e  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &x.n>O  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xf|vz|J?y  
2~B9 (|  
Of gmJ(%  
#E;a ;$p  
Rm&4Pku  
function z = zernfun(n,m,r,theta,nflag) :ceT8-PBRx  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cOoF +hz0O  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -qs R,H  
%   and angular frequency M, evaluated at positions (R,THETA) on the pPH"6   
%   unit circle.  N is a vector of positive integers (including 0), and 0 zn }l6OS  
%   M is a vector with the same number of elements as N.  Each element Lk`,mjhk  
%   k of M must be a positive integer, with possible values M(k) = -N(k) ^3O`8o  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4?',E ddo  
%   and THETA is a vector of angles.  R and THETA must have the same _t-e.2a v  
%   length.  The output Z is a matrix with one column for every (N,M) d`sIgll&n  
%   pair, and one row for every (R,THETA) pair. c2~oPUj  
% `gE_u  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H$)__V5I,q  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2]'cj  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral 4S\St <  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a0)]W%F  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized Y+Cqc.JBQ  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. / 0ra]}[(  
% @3_."-d  
%   The Zernike functions are an orthogonal basis on the unit circle. t2_pwd*B  
%   They are used in disciplines such as astronomy, optics, and ,8&ND864v  
%   optometry to describe functions on a circular domain. bFB.hkTP  
% L IN$Y  
%   The following table lists the first 15 Zernike functions. X$(YCb  
% fl+dL#]  
%       n    m    Zernike function           Normalization KYM%U" jD  
%       -------------------------------------------------- *}RV)0mif  
%       0    0    1                                 1 Sej(jJX1  
%       1    1    r * cos(theta)                    2 B#, TdP]/  
%       1   -1    r * sin(theta)                    2 $TY 1'#1U;  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) JWV n@)s  
%       2    0    (2*r^2 - 1)                    sqrt(3) I*EHZctH  
%       2    2    r^2 * sin(2*theta)             sqrt(6) hwi$:[  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) cNG`-+U'  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) <o: O<p@6  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +z O.|`+  
%       3    3    r^3 * sin(3*theta)             sqrt(8) kn= fW1  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) 0NMmN_Lr  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4YyVh.x  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) )~C+nb '6/  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ={B?hjo<-  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 19*D*dkBR  
%       -------------------------------------------------- Jl@YBzDfF  
% KvNw'3Ua  
%   Example 1: .q5WK#^  
% +?ilTU  
%       % Display the Zernike function Z(n=5,m=1) 'M=V{.8U  
%       x = -1:0.01:1; Rd ,5 &X$  
%       [X,Y] = meshgrid(x,x); R=<uf:ca  
%       [theta,r] = cart2pol(X,Y); tE]Y=x[Ux  
%       idx = r<=1; n}3fItSJ  
%       z = nan(size(X)); LDY k\[81  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); GEJy?$9   
%       figure IP+.L]S  
%       pcolor(x,x,z), shading interp VskdC?yIp  
%       axis square, colorbar 8Uoqj=5F  
%       title('Zernike function Z_5^1(r,\theta)') g;\_MbfP  
% Ybp';8V  
%   Example 2: 0/fA>%&  
%  li  
%       % Display the first 10 Zernike functions n1)~/ >  
%       x = -1:0.01:1; 2T3b6  
%       [X,Y] = meshgrid(x,x); Fh~ pB>t  
%       [theta,r] = cart2pol(X,Y); C~c|};&%  
%       idx = r<=1; kA{eT  
%       z = nan(size(X)); VY j pl  
%       n = [0  1  1  2  2  2  3  3  3  3]; p{w:^l(  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; nrJW.F]S8[  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; s/0~!0  
%       y = zernfun(n,m,r(idx),theta(idx)); !d{Ijs'T  
%       figure('Units','normalized') 4N_iHe5U  
%       for k = 1:10 de,4M s!%  
%           z(idx) = y(:,k); [=& tN)_  
%           subplot(4,7,Nplot(k)) [f#7~  
%           pcolor(x,x,z), shading interp hs?cV)hDS  
%           set(gca,'XTick',[],'YTick',[]) Tw@:sWC  
%           axis square /5j]laYK)  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `+5,=S  
%       end b&I{?'"%8  
% Ht&%`\9s  
%   See also ZERNPOL, ZERNFUN2. (T1d!v"~"  
llRQxk  
9 $ Ud\   
%   Paul Fricker 11/13/2006 (laVmU?I7  
ySNXjH Q=  
k*!f@ M  
Hi#f Qji  
<gjA(xT5  
% Check and prepare the inputs: 5v5K}hx  
% ----------------------------- LNI]IITx/  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7cV GB  
    error('zernfun:NMvectors','N and M must be vectors.') /}R*'y  
end C~8;2/F7  
OG{vap)  
6w*q~{"(  
if length(n)~=length(m) );1UbqVPD  
    error('zernfun:NMlength','N and M must be the same length.') S*S @a4lV7  
end m 4V0e~]  
TUM7(-,9  
ER)to<k  
n = n(:); 9q>rUoK^  
m = m(:); f~v@;/HL  
if any(mod(n-m,2)) k8O%gO  
    error('zernfun:NMmultiplesof2', ... ]_y0wLq  
          'All N and M must differ by multiples of 2 (including 0).') :WAFBK/x  
end 0/,Dy2h  
faPgp  
8mv}-;  
if any(m>n) Bb@m-+f  
    error('zernfun:MlessthanN', ... b";D*\=x  
          'Each M must be less than or equal to its corresponding N.') V8+8?5'l  
end v)-:0 f  
wSIfqf+y  
G ,? l o=m  
if any( r>1 | r<0 ) 7f#r&~=  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') |QxT"`rT  
end \Zmn!Gg  
3p#BEH<re  
0qhSV B5  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) W B7gY\Y&M  
    error('zernfun:RTHvector','R and THETA must be vectors.')  Mt   
end @;g|styh^  
oz#;7 ?9  
;SVAar4r  
r = r(:); 9 t o2V  
theta = theta(:); )&wJ_ (z  
length_r = length(r); \p{$9e;8yT  
if length_r~=length(theta) -:!FQ'/7E  
    error('zernfun:RTHlength', ... t+%tN^87:  
          'The number of R- and THETA-values must be equal.') ;.#l[  
end X}R Q&k  
J>%uak<  
ODE^;:z !  
% Check normalization: k!= jO#)Rd  
% -------------------- Yb=Z `)  
if nargin==5 && ischar(nflag) PYJ8\XZ1_N  
    isnorm = strcmpi(nflag,'norm'); ZGbY  
    if ~isnorm /I@Dv?  
        error('zernfun:normalization','Unrecognized normalization flag.') cH{[\F"Eb  
    end O [v(kH'  
else _MST8  
    isnorm = false; E;)7#3gY1  
end qTi%].F"G  
BIeeu@p  
;1Zz-@  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,BuEX#ZaBl  
% Compute the Zernike Polynomials ebmU~6v k  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Df_*W"(v  
-wUw)gJbM  
C|H/x\?zRv  
% Determine the required powers of r: ,V{Cy`bi  
% ----------------------------------- gRQV)8uh  
m_abs = abs(m); i\94e{uty[  
rpowers = []; #(f- cK  
for j = 1:length(n) 6gN>P%n  
    rpowers = [rpowers m_abs(j):2:n(j)]; /FW{>N1   
end d>r_a9 .u  
rpowers = unique(rpowers); -eSZpzp  
-]e@FNL  
~ $QNp#dq  
% Pre-compute the values of r raised to the required powers, z*BGaSX %  
% and compile them in a matrix: h Lv_ER?  
% ----------------------------- AW< z7B D  
if rpowers(1)==0 t) h{ w"v  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +tSfx  
    rpowern = cat(2,rpowern{:}); HDV$y=oHh  
    rpowern = [ones(length_r,1) rpowern]; vivU4:uH3  
else P K9BowlW  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A<|]>[ax  
    rpowern = cat(2,rpowern{:}); h:l4:{A64  
end 3,4m|Z2)  
-/z#?J\  
_|qs-USA  
% Compute the values of the polynomials: OZed+t=  
% -------------------------------------- ^DWhIxBh  
y = zeros(length_r,length(n)); 6<N Q/*(/  
for j = 1:length(n) `-QY<STTP9  
    s = 0:(n(j)-m_abs(j))/2; zy!mP  
    pows = n(j):-2:m_abs(j); c"x-_Uk  
    for k = length(s):-1:1 P@pJ^5Jf  
        p = (1-2*mod(s(k),2))* ... .X)TRD#MW  
                   prod(2:(n(j)-s(k)))/              ... p:@JCsH=  
                   prod(2:s(k))/                     ... R}VEq gq  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oA'LQ  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); )/_T`cN  
        idx = (pows(k)==rpowers); ,oS<9kC68  
        y(:,j) = y(:,j) + p*rpowern(:,idx); jUg.Y98  
    end f1}am<  
     #k*P/I~  
    if isnorm wdzZ41y1  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); LA%t'n h  
    end @+ee0 CLT  
end lIDGL05f'  
% END: Compute the Zernike Polynomials +M %zOX/  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $Z!7@_Ys  
?!d\c(5Gt  
NP_b~e6O=  
% Compute the Zernike functions: ,OilGTQ#  
% ------------------------------ =SqI# v  
idx_pos = m>0; e+ckn   
idx_neg = m<0; F^bzE5#  
'}|sRuftb  
@& vtY._  
z = y; '4J];Nj0  
if any(idx_pos) G<f"_NT  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?.%'[n>P  
end <!qv$3/7  
if any(idx_neg) IS9}@5`'  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @+(TM5Ub  
end d5z?QI  
1O{x9a5Z?O  
g k.c"$2  
% EOF zernfun A0>u9Bn"Qw  
phoenixzqy 2012-04-23 20:38
慢慢研究,这个专业性很强的。用的人又少。
sansummer 2012-04-27 10:22
这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
jssylttc 2012-05-14 11:28
sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -/O_wqm#  
2zz7/]?Q   
DDE还是手动输入的呢? IJ`%Zh{f  
!M&Qca2  
zygo和zemax的zernike系数,类型对应好就没问题了吧
jssylttc 2012-05-14 11:37
顶顶·········
18257342135 2016-12-13 10:03
支持一下,慢慢研究
查看本帖完整版本: [-- 如何从zernike矩中提取出zernike系数啊 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计