| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 |f' 8p8J
*4yN3y % This Matlab script file solves the coupled nonlinear Schrodinger equations of `gguip-C % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of _l&ucA % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /1.rz{wpb % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?2`$3[ET- ZKdh%8C %fid=fopen('e21.dat','w'); ; B$*)X9 N = 128; % Number of Fourier modes (Time domain sampling points) 5h^[^*A? M1 =3000; % Total number of space steps 2C/%gcN > J =100; % Steps between output of space >BoSw&T$Q T =10; % length of time windows:T*T0 .Ff_s T0=0.1; % input pulse width DeQDH5X" MN1=0; % initial value for the space output location %$9bce-fcG dt = T/N; % time step fluGf n = [-N/2:1:N/2-1]'; % Index n0fR u`SNV t = n.*dt; %z)EO9vtr u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 36A;!1 u20=u10.*0.0; % input to waveguide 2 a$}6:E u1=u10; u2=u20; eyB_l.U7 U1 = u1; nNR:cGfG U2 = u2; % Compute initial condition; save it in U ukihx?5 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. uiMIz?+ w=2*pi*n./T; nVOqn\m- g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Y!n'" *J> L=4; % length of evoluation to compare with S. Trillo's paper dR[o|r dz=L/M1; % space step, make sure nonlinear<0.05 kL;t8{n for m1 = 1:1:M1 % Start space evolution W"qL-KW u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 8/q*o>[? u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =K'L|QKF ca1 = fftshift(fft(u1)); % Take Fourier transform VS`Z_Xn ca2 = fftshift(fft(u2)); UrK"u{G c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation GOr}/y; c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 9d\N[[Vu]R u2 = ifft(fftshift(c2)); % Return to physical space gWu"91Y0> u1 = ifft(fftshift(c1)); cU | _ if rem(m1,J) == 0 % Save output every J steps.
8 +(c 1 U1 = [U1 u1]; % put solutions in U array ETelbj;0 U2=[U2 u2]; t)(v4^T MN1=[MN1 m1]; zoXuFg z1=dz*MN1'; % output location .^H1\p];Lw end RV92qn
B end l<N?' & hg=abs(U1').*abs(U1'); % for data write to excel o*_g$ ha=[z1 hg]; % for data write to excel 3"tg+DncC t1=[0 t']; zJ_My&~ hh=[t1' ha']; % for data write to excel file l $ Zs~@N %dlmwrite('aa',hh,'\t'); % save data in the excel format Cyf]`* figure(1) S7#0*2#[o waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn NDo^B7R- figure(2) sZm^&h; waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn *a4
b %:tr 非线性超快脉冲耦合的数值方法的Matlab程序 Q9q9<J7j$ mxhW|}_-j 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 AeQC: Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /cY[at|p *NjMb{[ZQ i*A$SJ:} f#c BQ~ % This Matlab script file solves the nonlinear Schrodinger equations buc*rtHfA % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9/H^t*5t % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear VY{,x;O` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,whM22Af~{ T~|PU{ C=1; c8\g"T M1=120, % integer for amplitude -W6V,+of M3=5000; % integer for length of coupler 5W5pRd>Q N = 512; % Number of Fourier modes (Time domain sampling points) J\GKqt;5@ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. TP^\e_k T =40; % length of time:T*T0. NIL^UN} dt = T/N; % time step N$*>suQ, n = [-N/2:1:N/2-1]'; % Index T/Ez*iQW t = n.*dt; v6(,Ax& ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. cWc$yE' w=2*pi*n./T; [$H( CH` g1=-i*ww./2; IjgBa-o/V g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $1=v.'Y g3=-i*ww./2; ;?j~8 P1=0; Qvs(Rt3?y P2=0; +E `063 P3=1; YFAnlqC P=0; GMt)}Hz for m1=1:M1 #Z#_!o p=0.032*m1; %input amplitude eKS:7:X s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 R+x%r&L5F s1=s10; &a~L_`\' s20=0.*s10; %input in waveguide 2 n*Q4G}p s30=0.*s10; %input in waveguide 3 xQZMCd s2=s20; J$<:/^t s3=s30; ^M"HSewo p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); 8L@UB6b\ %energy in waveguide 1 64;oB_ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); WMRYT"J?N] %energy in waveguide 2 kKNk2!z`M p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); sCL/pb] %energy in waveguide 3 :v''"+\ for m3 = 1:1:M3 % Start space evolution ]Oig..LJ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS XC57];- s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6Lav.x\W s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; W[@"H1bVH sca1 = fftshift(fft(s1)); % Take Fourier transform 1\=pPys) sca2 = fftshift(fft(s2)); R,fMZHAG sca3 = fftshift(fft(s3)); d#RF0,Y 9 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift 5IwX\ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); F9ZOSL
8Q sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #a/n5c&6/ s3 = ifft(fftshift(sc3)); Z&BM%.NZJ s2 = ifft(fftshift(sc2)); % Return to physical space !#l0@3 s1 = ifft(fftshift(sc1)); <7@mg/T end tOu90gu p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ZY~zpC_ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); LS*{]@8q p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $#g#[/ P1=[P1 p1/p10]; I67k M{V P2=[P2 p2/p10]; WXRHG)nvL P3=[P3 p3/p10]; Y*h`), P=[P p*p]; Xd90n>4S end D>,$c figure(1) eYnLZ&H5O plot(P,P1, P,P2, P,P3); 8HHgN`_ 1gf/#+$\ 转自:http://blog.163.com/opto_wang/
|
|