首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 |A/_Qe|s2  
(IHBib "  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 5f@YrTO[@  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of n]c,0N  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Eq;frnw>q  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X&oy.Roo  
mf[79:90^  
%fid=fopen('e21.dat','w'); /_\W*@ E  
N = 128;                       % Number of Fourier modes (Time domain sampling points) uOqDJM'RM  
M1 =3000;              % Total number of space steps j =%-b]  
J =100;                % Steps between output of space C\@YH]  
T =10;                  % length of time windows:T*T0 ,;pX.Ob U  
T0=0.1;                 % input pulse width QjN3j*@  
MN1=0;                 % initial value for the space output location "hY^[@7 W  
dt = T/N;                      % time step V="f)'S$  
n = [-N/2:1:N/2-1]';           % Index O|zmDp8a+  
t = n.*dt;   ^l9 *h  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 TFNU+  
u20=u10.*0.0;                  % input to waveguide 2 i1@gHk  
u1=u10; u2=u20;                 0M2+?aKif  
U1 = u1;   bO%ck-om!  
U2 = u2;                       % Compute initial condition; save it in U Pm;*Jv%  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <f{`}drp/  
w=2*pi*n./T; 5MU@g*gj,C  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >Nl~"J|]q  
L=4;                           % length of evoluation to compare with S. Trillo's paper \1 D,Kx;Cb  
dz=L/M1;                       % space step, make sure nonlinear<0.05  2_v+q  
for m1 = 1:1:M1                                    % Start space evolution eG>Fn6G<g  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS sn`?Foh  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;  HcS^3^Y  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform ([o:_5/8I  
   ca2 = fftshift(fft(u2)); 5{aQ4H>~tx  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "E!p1  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   y+R$pzX  
   u2 = ifft(fftshift(c2));                        % Return to physical space #|E. y^IC  
   u1 = ifft(fftshift(c1)); \ jdO,-(  
if rem(m1,J) == 0                                 % Save output every J steps. W?Abx  
    U1 = [U1 u1];                                  % put solutions in U array &Sp:?I-  
    U2=[U2 u2]; ~x|Sv4M  
    MN1=[MN1 m1]; )WJI=jl  
    z1=dz*MN1';                                    % output location 4>`w9   
  end ~2ei+#d!^  
end [/j-d  
hg=abs(U1').*abs(U1');                             % for data write to excel :u93yH6~8  
ha=[z1 hg];                                        % for data write to excel c4W"CD;D  
t1=[0 t']; PP|xIAc  
hh=[t1' ha'];                                      % for data write to excel file >m{-&1Tx  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format '-TFrNO;h  
figure(1) S]@iS[|?  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn v3#47F)  
figure(2) I@v.Hqg+7  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Yr0i9Qow  
sRI8znus  
非线性超快脉冲耦合的数值方法的Matlab程序 vtjG&0GSK  
cu|q &  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   e$I:[>  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :PkSX*E[q  
nwH|Hs riU  
5|z[%x~f  
ueo3i1  
%  This Matlab script file solves the nonlinear Schrodinger equations #R| 4(HlL  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Y :BrAa[  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear l%/,Ef*3  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X)5O@"4 ?  
^S$w,  
C=1;                           ` XY[ HK  
M1=120,                       % integer for amplitude +O6@)?pI  
M3=5000;                      % integer for length of coupler obGSc)?j  
N = 512;                      % Number of Fourier modes (Time domain sampling points) |9M y>8k(  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 4}j}8y2)H  
T =40;                        % length of time:T*T0. .<hv &t  
dt = T/N;                     % time step xSZw,  
n = [-N/2:1:N/2-1]';          % Index <h0ptCB  
t = n.*dt;   roQIP%h!  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. #}?$mxME*  
w=2*pi*n./T; qIp`'.#m  
g1=-i*ww./2; > xw+2<  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; rR;Om1 -,  
g3=-i*ww./2; #y%Ao\~kG  
P1=0; ,oe4*b}O=.  
P2=0; H8U*oLlc  
P3=1; $ E6uA}s  
P=0; ><^@1z.J  
for m1=1:M1                 ?c*d z{  
p=0.032*m1;                %input amplitude .quc i(D  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 E>v~B;@  
s1=s10; *x!5I$~J  
s20=0.*s10;                %input in waveguide 2 A+&Va\|x  
s30=0.*s10;                %input in waveguide 3 "zc!QHpSd  
s2=s20; q ~lW  
s3=s30; o,I642R~  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   yKJp37R  
%energy in waveguide 1 @"0qS:s]X  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ," v%  
%energy in waveguide 2 =?hlgQ  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   5E8P bV-l  
%energy in waveguide 3 ^&%?Q_]  
for m3 = 1:1:M3                                    % Start space evolution TB\CSXb  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS dl4.jLY  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; AS;{{^mM(  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 5`Z#m:+u  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform ;MD{p1w  
   sca2 = fftshift(fft(s2)); `{":*V   
   sca3 = fftshift(fft(s3));  'M{_S  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   )Ec;krb+  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); nq;)!Wry  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); :OM>z4mQ  
   s3 = ifft(fftshift(sc3)); /uVB[Tk^  
   s2 = ifft(fftshift(sc2));                       % Return to physical space A{vG@Pwc:  
   s1 = ifft(fftshift(sc1)); M?o`tWLhF  
end +Xk!)Ge5E*  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); rO~D{)Nu  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2ou?:5i  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Z8W<RiR  
   P1=[P1 p1/p10]; ~jaGf  
   P2=[P2 p2/p10]; Ho/5e*X  
   P3=[P3 p3/p10];  xMU)  
   P=[P p*p]; QX4I+x~oo\  
end JC-L80-  
figure(1) wP i=+  
plot(P,P1, P,P2, P,P3); n3w2&  
2#^[`sFPO  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计