首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 )}%O>%  
|WryBzZ>on  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,6^ znOt  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of jVgFZ,  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear DciwQcG  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5qUTMT['T  
XZNY4/ 25G  
%fid=fopen('e21.dat','w'); ?Ucu#UO  
N = 128;                       % Number of Fourier modes (Time domain sampling points) YT/kC'A  
M1 =3000;              % Total number of space steps y)c5u%(  
J =100;                % Steps between output of space 4F3x@H'  
T =10;                  % length of time windows:T*T0 B\*@krI@  
T0=0.1;                 % input pulse width |tzg :T;  
MN1=0;                 % initial value for the space output location . v@>JZC  
dt = T/N;                      % time step lOwS&4UT  
n = [-N/2:1:N/2-1]';           % Index S\6[EQ65  
t = n.*dt;   Nr<`Z  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 m4E)qCvy  
u20=u10.*0.0;                  % input to waveguide 2 L(>=BK*  
u1=u10; u2=u20;                 ^04Q%,  
U1 = u1;   g42)7  
U2 = u2;                       % Compute initial condition; save it in U 39F O f  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. l%z<(L5  
w=2*pi*n./T; :4S%'d7  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T d1@%W;qX!  
L=4;                           % length of evoluation to compare with S. Trillo's paper ;;$#)b  
dz=L/M1;                       % space step, make sure nonlinear<0.05 /y7M lU9  
for m1 = 1:1:M1                                    % Start space evolution Z}A%=Z\/3  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 7?gFy-  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; L\{IljA  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform Cd79 tu|  
   ca2 = fftshift(fft(u2)); d%I" /8-J  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation S_T^G` [  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   b*fgv9Kh'  
   u2 = ifft(fftshift(c2));                        % Return to physical space :!;'J/B@..  
   u1 = ifft(fftshift(c1)); WnUweSdW  
if rem(m1,J) == 0                                 % Save output every J steps. 1 Q-bYJG  
    U1 = [U1 u1];                                  % put solutions in U array f=!PllxL:  
    U2=[U2 u2]; &0TVi  
    MN1=[MN1 m1]; *rZ^^`4R  
    z1=dz*MN1';                                    % output location rKHY?{!  
  end cH-@V<  
end 'Djm0  
hg=abs(U1').*abs(U1');                             % for data write to excel ~1m2#>  
ha=[z1 hg];                                        % for data write to excel b?4/#&z]  
t1=[0 t']; C.^Ven  
hh=[t1' ha'];                                      % for data write to excel file XS0xLt=  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format  HBys  
figure(1) 0yx3OY  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 3lLMu B+  
figure(2) _mS!XF~`P  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~m1P_`T  
6ZgU"!|r  
非线性超快脉冲耦合的数值方法的Matlab程序 {u!)y?}I-  
kY,U8a3!  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   TvNY:m6.%  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p2J|Hl|  
dt[k\ !-v  
L{l6Dd43q  
aw ?=hXR!  
%  This Matlab script file solves the nonlinear Schrodinger equations /:<IIqO.  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ;Zj]~|  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bsxTqJ  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iyVB3:M  
 %d Ernc$  
C=1;                           GEjd7s]C  
M1=120,                       % integer for amplitude lT\a2.E  
M3=5000;                      % integer for length of coupler j7FN\ cz  
N = 512;                      % Number of Fourier modes (Time domain sampling points) =.|J!x  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. T,fI BD:  
T =40;                        % length of time:T*T0. #U=X NU}k  
dt = T/N;                     % time step <]C$xp<2  
n = [-N/2:1:N/2-1]';          % Index k{tMzx]F__  
t = n.*dt;   )CI1;  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. o ]Jv;Iy@?  
w=2*pi*n./T; |8%m.fY`  
g1=-i*ww./2; VN4yn| f/  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 2>} xhQJ  
g3=-i*ww./2; _4 6X%k  
P1=0; H7+X&#s%  
P2=0; ?::NO Dg  
P3=1; RWgDD;&_[a  
P=0; &X9Z W$C  
for m1=1:M1                 c/L>>t  
p=0.032*m1;                %input amplitude dk QaM@  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _qvK*nE  
s1=s10; ,=(Z00#(  
s20=0.*s10;                %input in waveguide 2 M >:]lpRK  
s30=0.*s10;                %input in waveguide 3 9/SXs0  
s2=s20; 6#}93Dgv4  
s3=s30; oHM ]  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   >Sa*`q3J  
%energy in waveguide 1 G.+l7bnZM  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   kE.x+2  
%energy in waveguide 2 l5Y/Ok0,  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   rzrl>9 h  
%energy in waveguide 3 M)?dEgU}M  
for m3 = 1:1:M3                                    % Start space evolution `=#01YX[0  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS oMcK`%ydm  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; YL jHt\  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; T0Yiayt  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform :J}t&t  
   sca2 = fftshift(fft(s2)); 2)?(R;$,  
   sca3 = fftshift(fft(s3)); 6{x,*[v  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   eZ a:o1y  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 3qHQX?a  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /Y[~-Y+!,  
   s3 = ifft(fftshift(sc3)); HQ9f ,<  
   s2 = ifft(fftshift(sc2));                       % Return to physical space d;tkJ2@NO  
   s1 = ifft(fftshift(sc1)); HhA -[p  
end )T907I|  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); zWw2V}U!  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); &a!BD/  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /)N@M  
   P1=[P1 p1/p10]; I~PDaZP  
   P2=[P2 p2/p10]; R8*Q$rH<  
   P3=[P3 p3/p10]; OYM@szM  
   P=[P p*p]; ^x*nq3^h\  
end @Un/c:n  
figure(1) 1{pmKPu  
plot(P,P1, P,P2, P,P3); k.h`Cji@  
w&Dv8Wv+Oq  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计