| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 ,zc(t<|-y O/LXdz0B % This Matlab script file solves the coupled nonlinear Schrodinger equations of HaYo!.(Fv % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Q2>gU# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \)e'`29; % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,,r>,Xq6 5r0YA
IJ %fid=fopen('e21.dat','w'); KPki}'GO N = 128; % Number of Fourier modes (Time domain sampling points) 'GScszz M1 =3000; % Total number of space steps $[|mGae J =100; % Steps between output of space +ge?w#R T =10; % length of time windows:T*T0 ^zr`;cJ+c T0=0.1; % input pulse width JXxwr)i MN1=0; % initial value for the space output location ~J]qP #C dt = T/N; % time step i/.6>4tE: n = [-N/2:1:N/2-1]'; % Index ~#/ t = n.*dt; 1~gCtBRM u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 HOi`$vX}N u20=u10.*0.0; % input to waveguide 2 gM]:Ma u1=u10; u2=u20; +[ZY:ZQ U1 = u1; ry]l.@o; U2 = u2; % Compute initial condition; save it in U k3|Z7eW}[ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. +7a6*;\ y w=2*pi*n./T; a9Vi]; g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F"kAkX>3} L=4; % length of evoluation to compare with S. Trillo's paper "M0z(NkH dz=L/M1; % space step, make sure nonlinear<0.05 K NOIZj for m1 = 1:1:M1 % Start space evolution )%]J>&/0J u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS n+p }\msH u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; jWgX_//! ca1 = fftshift(fft(u1)); % Take Fourier transform Fzcwy V
ca2 = fftshift(fft(u2)); kGJC\{N5N c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation O0:q;<>z c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift _v:SP
L U u2 = ifft(fftshift(c2)); % Return to physical space QWU-m{@~& u1 = ifft(fftshift(c1)); 7$#u if rem(m1,J) == 0 % Save output every J steps. 4e U1 = [U1 u1]; % put solutions in U array [><Tm\(: U2=[U2 u2]; bK7J} 8hH MN1=[MN1 m1]; bd`P0f? z1=dz*MN1'; % output location VaPG-n>Vf end 1H9!5=Ff end _dU\JD hg=abs(U1').*abs(U1'); % for data write to excel 4z)]@:`}z ha=[z1 hg]; % for data write to excel 0}9h]X' t1=[0 t']; sRfcF`7 hh=[t1' ha']; % for data write to excel file <naz+QK' %dlmwrite('aa',hh,'\t'); % save data in the excel format yQrD9*t&g figure(1) (%9$! v{3 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ,u m|1dh figure(2) Ca-j?bb! waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn [Qr"cR^ [ hsds\ 非线性超快脉冲耦合的数值方法的Matlab程序 #E]59_
W3RT{\ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 P2Y^d#jO Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6C)_ JtZ7ti S>{~nOYt-` X?Au/ % This Matlab script file solves the nonlinear Schrodinger equations LQ% `c % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kVL.PY\K % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ca\6vR % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }7X%'Bg=M )e{}V\;q C=1; Pz^544\~ou M1=120, % integer for amplitude I:.s_8mH} M3=5000; % integer for length of coupler Hv, LS;W N = 512; % Number of Fourier modes (Time domain sampling points) xC?h2hIt dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. @PU [:; T =40; % length of time:T*T0. r*Xuj= dt = T/N; % time step @pxcpXCy n = [-N/2:1:N/2-1]'; % Index gZ5 |UR< t = n.*dt; Mp]rUPK ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 8i pez/ w=2*pi*n./T; svSVG:48 g1=-i*ww./2; .^g p? g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; = /8cp g3=-i*ww./2; E.f%H(b P1=0; 4I7>f]=) P2=0; cNH7C"@GVu P3=1; ElXFeJ%[G P=0; ~5g ~;f[4 for m1=1:M1 %3rP`A p=0.032*m1; %input amplitude ])!*_ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 o(HbGHIP s1=s10; Y ay?=Y{ s20=0.*s10; %input in waveguide 2 O@P"MXEG s30=0.*s10; %input in waveguide 3 NO3/rJ6- s2=s20; *`U~?q} s3=s30; Z{R> p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); BuwY3F\-O %energy in waveguide 1 DrQ`]]jj7 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); T;uX4,|( %energy in waveguide 2 u&NV,6Fj2[ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); XilS!, %energy in waveguide 3 h\e.e3/ for m3 = 1:1:M3 % Start space evolution $u.z*b_yy s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS 1"g<0
W s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xfQ1T)F3g s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; AR=]=8 sca1 = fftshift(fft(s1)); % Take Fourier transform $C\BcKlmv sca2 = fftshift(fft(s2)); ZW}_DT0 sca3 = fftshift(fft(s3)); 5m*,8 ]!- sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift Vc2`b3"Br sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); nK,w]{<wG! sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9gFUaDLo s3 = ifft(fftshift(sc3)); &o*A{ s2 = ifft(fftshift(sc2)); % Return to physical space Uv.)?YeGh s1 = ifft(fftshift(sc1)); HDLk>_N_s, end kFB p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); YMgNzu p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); _LPHPj^Pg p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9my^Y9B P1=[P1 p1/p10]; uS-|wYE P2=[P2 p2/p10]; 9UkBwS` P3=[P3 p3/p10]; 99S^f:t P=[P p*p]; e!Hh s/&!T end +H.`MZ= figure(1) ;I*o@x_ plot(P,P1, P,P2, P,P3); {FGj]* M{\I8oOg 转自:http://blog.163.com/opto_wang/
|
|