首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 S%{^@L+V  
`j)S7KN  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 5N.-m;s  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %f'mW2  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ) u Sg;B4  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m?)REE  
3I):W9$Qp  
%fid=fopen('e21.dat','w'); !]*Cwbh. u  
N = 128;                       % Number of Fourier modes (Time domain sampling points) @B#\3WNt  
M1 =3000;              % Total number of space steps ExKjH*gn  
J =100;                % Steps between output of space O~~WP*N  
T =10;                  % length of time windows:T*T0 MIF`|3$,  
T0=0.1;                 % input pulse width qGVf! R  
MN1=0;                 % initial value for the space output location %!X9>i>  
dt = T/N;                      % time step *}<Uh'?  
n = [-N/2:1:N/2-1]';           % Index 6)j4-  
t = n.*dt;   2/F";tc\'  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ;%W]b  
u20=u10.*0.0;                  % input to waveguide 2 RM|2PG1m  
u1=u10; u2=u20;                 R&MdwTa  
U1 = u1;   9Q /t+  
U2 = u2;                       % Compute initial condition; save it in U 1r?hRJ:'  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ]/ffA|"U`  
w=2*pi*n./T; XV %DhR=  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T U_[<,JE  
L=4;                           % length of evoluation to compare with S. Trillo's paper }"x#uG  
dz=L/M1;                       % space step, make sure nonlinear<0.05 dgp1B\  
for m1 = 1:1:M1                                    % Start space evolution d.3cd40Q  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS $s.:H4:I  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ;U)xZ _Ew~  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 'nRoa7v(  
   ca2 = fftshift(fft(u2)); UYw=i4J'  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~;S  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   50jZu'z:  
   u2 = ifft(fftshift(c2));                        % Return to physical space >K;DBy*  
   u1 = ifft(fftshift(c1)); a2%xW_e  
if rem(m1,J) == 0                                 % Save output every J steps.  @ ^cR  
    U1 = [U1 u1];                                  % put solutions in U array c$P68$FB  
    U2=[U2 u2]; OC=g 1  
    MN1=[MN1 m1]; hH(w O\s  
    z1=dz*MN1';                                    % output location +S6(Fvp  
  end -~] q?k?  
end &,8F!)[9  
hg=abs(U1').*abs(U1');                             % for data write to excel z)Gd3C  
ha=[z1 hg];                                        % for data write to excel M~ eXC  
t1=[0 t']; H5!e/4iz  
hh=[t1' ha'];                                      % for data write to excel file Mj<T+Ohz  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format GTuxMg`  
figure(1) PK).)5sW  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn z;Jz^m-  
figure(2) {|{;:_.>  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn W\Df:P {<  
w&[&ZDsK  
非线性超快脉冲耦合的数值方法的Matlab程序 nghpWODq  
=JNCQu  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   w<&R|= 93  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8vqx}2  
.L@gq/x)  
z3Zo64V~7  
x:$ xtu  
%  This Matlab script file solves the nonlinear Schrodinger equations 8AQ__&nT  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of /Os6i&;  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 'W*:9wah  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 r#'ug^^k$X  
dt||nF  
C=1;                           Z^!% b  
M1=120,                       % integer for amplitude )_olJCdaP^  
M3=5000;                      % integer for length of coupler Y*/e;mG.  
N = 512;                      % Number of Fourier modes (Time domain sampling points) =1Hn<Xay0  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 8+@j %l j  
T =40;                        % length of time:T*T0. =&I9d;7  
dt = T/N;                     % time step yu>)[|-  
n = [-N/2:1:N/2-1]';          % Index s[bQO1g;*  
t = n.*dt;   ,GF]+nI89  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. VVJIJ9L&C  
w=2*pi*n./T; Vbv)C3ezD  
g1=-i*ww./2; HA74s':FN  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; %<0'xJ%%Q  
g3=-i*ww./2; N 9W,p 2  
P1=0; i__f%j`!W  
P2=0; MfZamu5+F  
P3=1; Z 4QL&?U  
P=0; qV0GpVJZU?  
for m1=1:M1                 OcLahz6  
p=0.032*m1;                %input amplitude |Iknk,  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 goe %'k,  
s1=s10; GTM@9^  
s20=0.*s10;                %input in waveguide 2 zY9CoadZ  
s30=0.*s10;                %input in waveguide 3 hg2Ywzfm-  
s2=s20; 8]mRX~  
s3=s30; ,N1pww?  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !dq$qUl/  
%energy in waveguide 1 a<J< Oc!  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ^8KxU  
%energy in waveguide 2 WjguM  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ~BiLzT1,  
%energy in waveguide 3 OS-k_l L  
for m3 = 1:1:M3                                    % Start space evolution K@%gvLa\  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (8baa.ge  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~O~iP8T  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Ma4eu8  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform ^5Zka!'X2Z  
   sca2 = fftshift(fft(s2)); 6l:uQz9  
   sca3 = fftshift(fft(s3)); *zQhTYY  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   OLo?=1&;;  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); _6!iv  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); z\"9T?zoo  
   s3 = ifft(fftshift(sc3)); $xCJ5M4  
   s2 = ifft(fftshift(sc2));                       % Return to physical space w  _4O;  
   s1 = ifft(fftshift(sc1)); _Wq;bKG  
end m>|7&l_  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); |8tKN"QG  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 0{ _6le]  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); |ZC'a!  
   P1=[P1 p1/p10]; P%ThW9^vnj  
   P2=[P2 p2/p10]; Jd~Mq9(  
   P3=[P3 p3/p10]; k!bG![Ie|  
   P=[P p*p]; I@5$<SN  
end B2Rpd &[  
figure(1) bI^F (  
plot(P,P1, P,P2, P,P3); MV w.Fl  
BNe>Lko  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计