首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 }}^,7npU  
w/b>awI  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of Usa+b A  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of IVI~1~  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear up\oWR:  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 CQ6'b,L&   
YCa@R!M*O  
%fid=fopen('e21.dat','w'); ;y>S7n>n:  
N = 128;                       % Number of Fourier modes (Time domain sampling points) H~A"C'P3#  
M1 =3000;              % Total number of space steps "w}-?:# j  
J =100;                % Steps between output of space ?PBa'g  
T =10;                  % length of time windows:T*T0 >5)<Uv$  
T0=0.1;                 % input pulse width :ozV3`%$(  
MN1=0;                 % initial value for the space output location T n"e   
dt = T/N;                      % time step &+mV7o  
n = [-N/2:1:N/2-1]';           % Index J|V K P7  
t = n.*dt;   c |>=S)|  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 8F#osN  
u20=u10.*0.0;                  % input to waveguide 2 +c^_^Z$_4o  
u1=u10; u2=u20;                 Iz DG&c  
U1 = u1;   Fi mN?s  
U2 = u2;                       % Compute initial condition; save it in U 9n1ZVP.ag  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !Y ( apVQ  
w=2*pi*n./T; QX[Djz0H8  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T J,f/fPaf7  
L=4;                           % length of evoluation to compare with S. Trillo's paper o^3FL||P#r  
dz=L/M1;                       % space step, make sure nonlinear<0.05 ^>C 11v  
for m1 = 1:1:M1                                    % Start space evolution *)u?~r(F  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `E@kFJ(<On  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; KQ&Y2l1*>>  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 6+.>5e  
   ca2 = fftshift(fft(u2)); D^Te%qnW  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation !; IJ   
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   {P-xCmZ~Wt  
   u2 = ifft(fftshift(c2));                        % Return to physical space {m[s<A(  
   u1 = ifft(fftshift(c1)); <OTWT`G2  
if rem(m1,J) == 0                                 % Save output every J steps. B$rTwR"(-  
    U1 = [U1 u1];                                  % put solutions in U array +a%xyD:.?  
    U2=[U2 u2]; 5iVQc-m&  
    MN1=[MN1 m1]; (8.{+8o  
    z1=dz*MN1';                                    % output location 2d*_Qq1  
  end +R!zs  
end r'/\HWNP  
hg=abs(U1').*abs(U1');                             % for data write to excel nX|Q~x]  
ha=[z1 hg];                                        % for data write to excel \)OEBN`9#  
t1=[0 t']; x?#I4RJH;  
hh=[t1' ha'];                                      % for data write to excel file 6B0# 4Qrv  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format bNGCOj  
figure(1) l3.  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn qj&b o  
figure(2) ',7a E@PJ  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^i+[m  
w/W7N   
非线性超快脉冲耦合的数值方法的Matlab程序 LN4qYp6)G  
Y25^]ON*\^  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   `H>b5  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `\bT'~P  
\q "N/$5{f  
ciudRK63M  
4:7mK/Z  
%  This Matlab script file solves the nonlinear Schrodinger equations t6+YXjXK  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !^e =P%S  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [:iv4>ZZ  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Bq@zaMv  
`9Yn0B.  
C=1;                           WF2NG;f=  
M1=120,                       % integer for amplitude ]ab#q=  
M3=5000;                      % integer for length of coupler E V2  )  
N = 512;                      % Number of Fourier modes (Time domain sampling points) iXFP5a>|  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. }u%"$[I}  
T =40;                        % length of time:T*T0. 5+- I5HX|~  
dt = T/N;                     % time step ](#&.q%5!  
n = [-N/2:1:N/2-1]';          % Index \ECu5L4  
t = n.*dt;   Ye5jB2Z  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. glE^t6)  
w=2*pi*n./T; "7,FXTaer  
g1=-i*ww./2; Z o=]dBp.  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; PE"v*9k  
g3=-i*ww./2; 9XLFHV("  
P1=0; 9M a0^_  
P2=0; O/Rhf[7v*  
P3=1; @*>Sw>oet  
P=0; hIYTe  
for m1=1:M1                 FY'ty@|_s  
p=0.032*m1;                %input amplitude t P"\J(x  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -oyO+1V  
s1=s10; Wh( |+rJ?Z  
s20=0.*s10;                %input in waveguide 2 #Yuvbb[  
s30=0.*s10;                %input in waveguide 3 D)Q)NI  
s2=s20; -F\qnsZ2  
s3=s30; 4-R^/A0  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ^e Gue  
%energy in waveguide 1 2;$ k(x]  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   !TKkec8$  
%energy in waveguide 2 nXA\|c0  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   egk7O4zwP  
%energy in waveguide 3 ~rD={&0  
for m3 = 1:1:M3                                    % Start space evolution F'JY?  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 445o DkG  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 9Q;c ,]  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 5D Y\:AF  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform #]]Su91BA  
   sca2 = fftshift(fft(s2)); (:pq77  
   sca3 = fftshift(fft(s3)); h3* x[W  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   F_;DN: {  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ,=QM#l]  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8RW&r  
   s3 = ifft(fftshift(sc3)); "TcW4U9  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ORN6vX(1  
   s1 = ifft(fftshift(sc1)); $((6=39s  
end BvD5SBa}"  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); o>Er_r  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2@=IT0[E\  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Hr<o!e{Y  
   P1=[P1 p1/p10]; Iu@y(wyg  
   P2=[P2 p2/p10]; 69K{+|  
   P3=[P3 p3/p10]; qZv =  
   P=[P p*p]; +rXF{@ l  
end DZS]AC*  
figure(1) iRV~Il#~!  
plot(P,P1, P,P2, P,P3); 6 K` c/)  
@|}BXQNd  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计