| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 D*Q.G8( \OpoBXh % This Matlab script file solves the coupled nonlinear Schrodinger equations of :ECi+DxBK % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Lh-`OmO0>F % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]k8/#@19 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |uH%6&\ }Y17*zp% %fid=fopen('e21.dat','w'); TV}}dw N = 128; % Number of Fourier modes (Time domain sampling points) 35*\_9/# M1 =3000; % Total number of space steps 'snYu!`z
J =100; % Steps between output of space uGl| pJ\y= T =10; % length of time windows:T*T0 y9|K|xO[ T0=0.1; % input pulse width *X38{rj MN1=0; % initial value for the space output location Z_1*YRBY; dt = T/N; % time step [;b=A n = [-N/2:1:N/2-1]'; % Index fXQiNm[P t = n.*dt; RP`2)/sMT u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 5b6s4ZyV u20=u10.*0.0; % input to waveguide 2 ag4`n:1 u1=u10; u2=u20; l~Lb!; ,dN U1 = u1; rB%$;<`/ U2 = u2; % Compute initial condition; save it in U W];EKj,3W ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. swc@34ei\ w=2*pi*n./T; t%r :4, g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 41 vL"P
K L=4; % length of evoluation to compare with S. Trillo's paper ehAu^^Q> dz=L/M1; % space step, make sure nonlinear<0.05 VZIR4J[\. for m1 = 1:1:M1 % Start space evolution \BI/G u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS lKEa)KF[ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; YO:&;K% ca1 = fftshift(fft(u1)); % Take Fourier transform ,`8Y8 ca2 = fftshift(fft(u2)); ,goBq3[%? c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation :'r6TVDW c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift y/@iT8$rp u2 = ifft(fftshift(c2)); % Return to physical space sst,dA V$ u1 = ifft(fftshift(c1)); <Jp1A#
%p if rem(m1,J) == 0 % Save output every J steps. )-/gLZsx U1 = [U1 u1]; % put solutions in U array ELh3^ U2=[U2 u2]; n`;R pr& MN1=[MN1 m1]; &4$oudn z1=dz*MN1'; % output location W%!@QY;E( end UlQQP^Na end ZZ)G5ji hg=abs(U1').*abs(U1'); % for data write to excel 8Vt4HD 08 ha=[z1 hg]; % for data write to excel " B@jfa% t1=[0 t']; czBi Dk4 hh=[t1' ha']; % for data write to excel file aN^IP %dlmwrite('aa',hh,'\t'); % save data in the excel format u=qPzmywt figure(1) C/v}^#cLD waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 2go> figure(2) =`I?mn& waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn s!6=|SS7 uiBTnG" 非线性超快脉冲耦合的数值方法的Matlab程序 8kW /DcLE N)43};e 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 wy4q[$.4v Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 MPRO
!45Z @5}gsC Z-|li}lDr dA#{Cn; % This Matlab script file solves the nonlinear Schrodinger equations <Ns &b.\h6 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9[|4[3K % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )XVh&'(r % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ZxS&4>. H|+tC=]4IZ C=1; BQjam+u6 M1=120, % integer for amplitude SQKt}kDbM M3=5000; % integer for length of coupler ,sb1"^Wc N = 512; % Number of Fourier modes (Time domain sampling points) nN ~GP"} dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. U7%28#@ T =40; % length of time:T*T0. &
QY#3yj= dt = T/N; % time step c)1=U_6 1 n = [-N/2:1:N/2-1]'; % Index H,>#|F t = n.*dt; K~>jApZ% ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. AQci,j" w=2*pi*n./T; J`Oy .Qu) g1=-i*ww./2; A'DVJ9%xB g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9 )Yw
: g3=-i*ww./2; ]M4NpUM P1=0; R[yL_> P2=0; [(cL/_ P3=1; iUNnPJh P=0; 5L&:_iQZy for m1=1:M1 cTj~lO6 p=0.032*m1; %input amplitude 8t9aHla s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 <"I?jgo s1=s10; RWahsJTu s20=0.*s10; %input in waveguide 2 ${e&A^h s30=0.*s10; %input in waveguide 3 b|E/LKa s2=s20; q 22/_nSC s3=s30; >i8~dEbB p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); fSV5 %energy in waveguide 1 P{lh)m> p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); #'NY}6cb$ %energy in waveguide 2 A[ 1)!e p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); +{xG<Wkltz %energy in waveguide 3 5<r)+?!n for m3 = 1:1:M3 % Start space evolution R`C.ha s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS EVSK8T, s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ;xW{Ehq-h s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; qP`?M\!O sca1 = fftshift(fft(s1)); % Take Fourier transform ;qT5faKB3J sca2 = fftshift(fft(s2)); gX"T*d>y sca3 = fftshift(fft(s3)); Q2$/e+ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift <`mOU}0) sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); nh|EZp] sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); -4`sqv ] s3 = ifft(fftshift(sc3)); 36i_D6 s2 = ifft(fftshift(sc2)); % Return to physical space B'/Icg.T s1 = ifft(fftshift(sc1)); P6E1^$e end J=L`]XE p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); G 4"lZM p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); feg`(R2 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1Q_ ``.M P1=[P1 p1/p10]; 165WO}(;/ P2=[P2 p2/p10]; T Xl\hL\+ P3=[P3 p3/p10]; $Q,n+ / P=[P p*p]; q"p#H 8 end )x9]xqoR figure(1) 7CYH'DL plot(P,P1, P,P2, P,P3); R]VTV7D &}|0CR.( 转自:http://blog.163.com/opto_wang/
|
|