首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 n4}e!  
/;1O9HJa  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of }&2,!;"">3  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `<| <1,  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NuUiW*|`7  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >kmgYWG  
B I3fk  
%fid=fopen('e21.dat','w'); !"Q%I#8uh  
N = 128;                       % Number of Fourier modes (Time domain sampling points) )& Oxp&x  
M1 =3000;              % Total number of space steps .]JIo&>5  
J =100;                % Steps between output of space NJ-Ji> w  
T =10;                  % length of time windows:T*T0 B'`25u_e<  
T0=0.1;                 % input pulse width $N;J)  
MN1=0;                 % initial value for the space output location 4 m"0R\  
dt = T/N;                      % time step kN8B,  
n = [-N/2:1:N/2-1]';           % Index r)K5<[\r  
t = n.*dt;   _2{_W9k  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 5 ;XYF0  
u20=u10.*0.0;                  % input to waveguide 2 _<Ij)#Rq7  
u1=u10; u2=u20;                 H{S+^'5Y.  
U1 = u1;   %N`_g' r!  
U2 = u2;                       % Compute initial condition; save it in U 8e,F{>N  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. sK&kp=zu  
w=2*pi*n./T; |0}7/^  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T (6:.u.b  
L=4;                           % length of evoluation to compare with S. Trillo's paper CYwV]lq :s  
dz=L/M1;                       % space step, make sure nonlinear<0.05 3(,m(+J[S  
for m1 = 1:1:M1                                    % Start space evolution 8TP~=qU  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ]vn*eqd  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; S4{vS?>j  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform Gau@RX:O  
   ca2 = fftshift(fft(u2)); lBs-u h  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation \)wch P_0  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ju "?b2f  
   u2 = ifft(fftshift(c2));                        % Return to physical space oSkQ/5hg.  
   u1 = ifft(fftshift(c1)); r `n|fD.  
if rem(m1,J) == 0                                 % Save output every J steps. -o`K/f}d  
    U1 = [U1 u1];                                  % put solutions in U array u~Po5W/i  
    U2=[U2 u2]; [6JDS;MIN  
    MN1=[MN1 m1]; [)GRP  
    z1=dz*MN1';                                    % output location y%61xA`#  
  end D M+MBK  
end e!gNd>b {  
hg=abs(U1').*abs(U1');                             % for data write to excel Fw{@RQf8  
ha=[z1 hg];                                        % for data write to excel j%-Ems*H  
t1=[0 t']; pUF JQ*  
hh=[t1' ha'];                                      % for data write to excel file *i:8g(  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format 3\ Mt+!1{  
figure(1) 2y!aXk\#C  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn KB :JVK^<  
figure(2) E QU@';~8  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <jF&+[*iT  
9lR6:}L7  
非线性超快脉冲耦合的数值方法的Matlab程序 }5(_gYr  
A%F8w'8(  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   "RK"Pn+  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -Fn/=  
V4ePYud;^  
.PVYYhrt  
gT$WG$^i  
%  This Matlab script file solves the nonlinear Schrodinger equations lnyq%T[^  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of d v[.u{#tP  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear T&>65`L  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O TlqJ  
Xy 4k;+  
C=1;                           W,Q>3y*  
M1=120,                       % integer for amplitude xZ;eV76  
M3=5000;                      % integer for length of coupler 0=6mb]VUi=  
N = 512;                      % Number of Fourier modes (Time domain sampling points) wbKJ:eWgt  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^\Q,ACkZb  
T =40;                        % length of time:T*T0. 0|tyKP|J  
dt = T/N;                     % time step IE996   
n = [-N/2:1:N/2-1]';          % Index 2\k!DF  
t = n.*dt;   X=)L$Kd7  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. a6./;OC  
w=2*pi*n./T; bO/r1W  
g1=-i*ww./2; m[2[9 bQ0  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; | |pOiR5  
g3=-i*ww./2; qp6'n&^&  
P1=0; e.DN,rhqI  
P2=0; wZ\93W-}  
P3=1;  =5B5  
P=0; '[F`!X  
for m1=1:M1                 S}U_uZ$b  
p=0.032*m1;                %input amplitude f&^}yqmuE  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 *qSvSY*  
s1=s10; wdBB x\FP  
s20=0.*s10;                %input in waveguide 2 ojf6@p_  
s30=0.*s10;                %input in waveguide 3 U+B"$yBR  
s2=s20; ~zac.:a8  
s3=s30; pqpsa'  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   D3dh,&KO\  
%energy in waveguide 1 \M@IKE  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   u;rmqo1  
%energy in waveguide 2 T3 ie-G@<  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   _zM?"16I}  
%energy in waveguide 3 UMd.=HC L  
for m3 = 1:1:M3                                    % Start space evolution 6IT6EkiT  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS kjV>\e  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ">1wPq&  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; iZdl0;16[  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform "'Fvt-<^S7  
   sca2 = fftshift(fft(s2)); 1<#D3CXK  
   sca3 = fftshift(fft(s3)); 9ETdO,L)f  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   h'h8Mm  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); (EWGX |QA  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); O^-QqCZE  
   s3 = ifft(fftshift(sc3)); 5p!{#r6m  
   s2 = ifft(fftshift(sc2));                       % Return to physical space (VN'1a (  
   s1 = ifft(fftshift(sc1)); t/O^7)%  
end WK*tXc_[b  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); hkb\ GcOj  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); PP'5ANK  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Vfy@?x= &  
   P1=[P1 p1/p10]; 13v`rK`7o  
   P2=[P2 p2/p10]; t6KKfb  
   P3=[P3 p3/p10]; +<xQF  
   P=[P p*p]; 3Q62H+MC  
end H9TeMY  
figure(1) !] uB4  
plot(P,P1, P,P2, P,P3); [Ca''JqrA  
v mkiw1  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计