首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 \k;`}3 uO  
tQZs.1=z  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 3iw{SEY  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Q-ni|  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G+B~Ix-  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;^*Unyt[4]  
,yd MU\so(  
%fid=fopen('e21.dat','w'); j4?@(u9;j  
N = 128;                       % Number of Fourier modes (Time domain sampling points) u` oq(?|  
M1 =3000;              % Total number of space steps +k dT(7  
J =100;                % Steps between output of space NCxqh<  
T =10;                  % length of time windows:T*T0 `_b`kzJ  
T0=0.1;                 % input pulse width iX0iRC6f  
MN1=0;                 % initial value for the space output location qB)"qFa  
dt = T/N;                      % time step d,8mY/S>w  
n = [-N/2:1:N/2-1]';           % Index c/B'jPt  
t = n.*dt;   j p $Z]  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 \Mg`(,kwe  
u20=u10.*0.0;                  % input to waveguide 2 qwIa?!8 o  
u1=u10; u2=u20;                 gp$Ucfu'  
U1 = u1;   u:aW 8  
U2 = u2;                       % Compute initial condition; save it in U )tCX y4  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. PW3GL3+  
w=2*pi*n./T; dw.F5?j`b  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >A0k 8T  
L=4;                           % length of evoluation to compare with S. Trillo's paper JG9`h#  
dz=L/M1;                       % space step, make sure nonlinear<0.05 mv5n4mav  
for m1 = 1:1:M1                                    % Start space evolution MxyN\Mq'  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS K}6dg<  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \rVQQ|l   
   ca1 = fftshift(fft(u1));                        % Take Fourier transform DGevE~  
   ca2 = fftshift(fft(u2)); J9K3s_SN  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation AfG/JWSo}  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   1sP dz L  
   u2 = ifft(fftshift(c2));                        % Return to physical space Bi@&nAhn@  
   u1 = ifft(fftshift(c1)); 4t)%<4  
if rem(m1,J) == 0                                 % Save output every J steps. aR,}W\6M  
    U1 = [U1 u1];                                  % put solutions in U array XUuu-wm:}  
    U2=[U2 u2]; ""s]zNF}  
    MN1=[MN1 m1]; 7\ nf:.  
    z1=dz*MN1';                                    % output location $lhC{&tBV  
  end W>q HFoKa  
end +za8=`2o  
hg=abs(U1').*abs(U1');                             % for data write to excel N)&4Hy  
ha=[z1 hg];                                        % for data write to excel 0\2\*I}?  
t1=[0 t']; : Sq?a0!S  
hh=[t1' ha'];                                      % for data write to excel file gKOOHUCb  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format U%h);!<  
figure(1) Z3!f^vAi&  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn O5H9Y}i]  
figure(2) N{-]F|XX  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn z&V+#Ws/  
PvGDTYcKp  
非线性超快脉冲耦合的数值方法的Matlab程序 %F kMv  
L28*1]\Jh  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   t%530EB3  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "_2Ng<2  
lY*[tmz)  
mrV!teP  
#z1H8CFL"  
%  This Matlab script file solves the nonlinear Schrodinger equations sBV 4)xM  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >a3p >2  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8p-=&cuo\@  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 au,t%8AC  
Jk0r&t7  
C=1;                           g@\fZTO  
M1=120,                       % integer for amplitude sl2@umR7%(  
M3=5000;                      % integer for length of coupler ZylJp8U  
N = 512;                      % Number of Fourier modes (Time domain sampling points) V^Hu3aUx8  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. S~]mWxgZ  
T =40;                        % length of time:T*T0. 7 bDHXn  
dt = T/N;                     % time step 'Wa,OFd\8  
n = [-N/2:1:N/2-1]';          % Index ^[15&T5  
t = n.*dt;   nNXgW  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. mqq;H}  
w=2*pi*n./T; h5yzwj:C?  
g1=-i*ww./2; /*|oL# hK  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Kt0(gQOr0  
g3=-i*ww./2; ]jpu,jz:  
P1=0; wp7!>% s{  
P2=0; N?X~w <  
P3=1; t#!yrQ..'G  
P=0; _{jjgQJ5  
for m1=1:M1                 0|; .6\  
p=0.032*m1;                %input amplitude 3OM2Y_  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 l|5fE1K9U  
s1=s10; (@WA1oNG  
s20=0.*s10;                %input in waveguide 2 Q]o C47(  
s30=0.*s10;                %input in waveguide 3 XR!us/U`a  
s2=s20; ZIdA\_c  
s3=s30; !;_H$r0  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   cwV]!=RtO  
%energy in waveguide 1 BPr ^D0P  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   c)0amM  
%energy in waveguide 2 3Tq\BZ  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   P9T5L<5  
%energy in waveguide 3 S>.F_Jl  
for m3 = 1:1:M3                                    % Start space evolution )#F]G$51r  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS lD{Aa!\  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; B^%1Rpcn  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; -R>}u'EG>  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform `>o?CIdp  
   sca2 = fftshift(fft(s2)); ,YhdY 6  
   sca3 = fftshift(fft(s3)); ttXjn  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   7Ol}EPf#  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); n[YEOkiG  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Tlj:%yK2  
   s3 = ifft(fftshift(sc3)); NzKUtwnIz  
   s2 = ifft(fftshift(sc2));                       % Return to physical space X0*QV- RN  
   s1 = ifft(fftshift(sc1)); wM_c48|d  
end 34!dYr%  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); e|4&b@  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); OiDhJ  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1N2,mo?2  
   P1=[P1 p1/p10]; 4d:{HLX,  
   P2=[P2 p2/p10]; ! Q<>3 xZ  
   P3=[P3 p3/p10]; ASPy  
   P=[P p*p]; 5PcJZi^.l  
end q.2(OP>(  
figure(1) ~XeFOM q  
plot(P,P1, P,P2, P,P3); -*2Mf Mh  
i@NqC;~;  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计