首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 NbkK&bz  
*HeVACxo  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of V{ |[oIp  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of CmnHh~%  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear l'uOORI  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qrE0H  
x<>YUw8`  
%fid=fopen('e21.dat','w'); U=QA  e  
N = 128;                       % Number of Fourier modes (Time domain sampling points) WFDCPQ@  
M1 =3000;              % Total number of space steps ,Xtj;@~-  
J =100;                % Steps between output of space AY88h$a  
T =10;                  % length of time windows:T*T0 cz(G]{N  
T0=0.1;                 % input pulse width c1#+Vse  
MN1=0;                 % initial value for the space output location $>r5>6  
dt = T/N;                      % time step V|: qow:F  
n = [-N/2:1:N/2-1]';           % Index ]0-<>  
t = n.*dt;   YlKFw|=  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 D/:3R ZF  
u20=u10.*0.0;                  % input to waveguide 2 x<F$aXOS  
u1=u10; u2=u20;                 H1&RI4XC  
U1 = u1;   0T9. M(  
U2 = u2;                       % Compute initial condition; save it in U kOI !~Qk  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 'RLOV  
w=2*pi*n./T; $^h?:L:1n  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T y-a|Lu*  
L=4;                           % length of evoluation to compare with S. Trillo's paper onnugj3  
dz=L/M1;                       % space step, make sure nonlinear<0.05 >lLo4M 3  
for m1 = 1:1:M1                                    % Start space evolution B^q<2S;  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "~\*If  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Ep ">v>"  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform X-/Ban  
   ca2 = fftshift(fft(u2)); vpLMhf`  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation doLNz4W  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   "DpKrVuG  
   u2 = ifft(fftshift(c2));                        % Return to physical space 8 Z8Y[p  
   u1 = ifft(fftshift(c1)); C6^j#rl  
if rem(m1,J) == 0                                 % Save output every J steps. C}Qt "-%  
    U1 = [U1 u1];                                  % put solutions in U array >| m.?{^  
    U2=[U2 u2]; ab4LTF|  
    MN1=[MN1 m1]; V^rW?Do  
    z1=dz*MN1';                                    % output location 39D }  
  end 1;&T^Gdj  
end PGX+p+wB  
hg=abs(U1').*abs(U1');                             % for data write to excel CDCC1BG"  
ha=[z1 hg];                                        % for data write to excel S#2[%o  
t1=[0 t']; '5rU e\k  
hh=[t1' ha'];                                      % for data write to excel file %VJW@S>j/  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format Ue7 6py9  
figure(1) %?=)!;[  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn RL&lKHA  
figure(2) XTo8,'UaP  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn d)KF3oA  
i!,HB|wQ  
非线性超快脉冲耦合的数值方法的Matlab程序 _B$"e[:yX  
=x H~ww (D  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   28oJFi]  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c#pj:f*H  
GYoseqZM  
zH=hI Vc  
o , LK[Q  
%  This Matlab script file solves the nonlinear Schrodinger equations H[nz]s  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of t.U{Bu P  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j-32S!  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TSQh X~RN  
VQ<5%+  
C=1;                           HcO5?{2  
M1=120,                       % integer for amplitude :Tb7r6  
M3=5000;                      % integer for length of coupler w1i?# !|  
N = 512;                      % Number of Fourier modes (Time domain sampling points) m[8 @Unt  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. xa#gWIP*  
T =40;                        % length of time:T*T0. woau'7}XOu  
dt = T/N;                     % time step * nCx[  
n = [-N/2:1:N/2-1]';          % Index , N 344y  
t = n.*dt;   fl)zQcA  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 4_Y!elH)  
w=2*pi*n./T; ) b:4uK A  
g1=-i*ww./2; x6e+7"#~  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; PEzia}m  
g3=-i*ww./2; `qu] Pxk  
P1=0; )4ncutb  
P2=0; 7I3:u+  
P3=1; B.K4!/cF  
P=0; w-FHhf  
for m1=1:M1                 2.qpt'p[  
p=0.032*m1;                %input amplitude voh^|(:(TH  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 SRWg[H  
s1=s10; uV77E*+7\  
s20=0.*s10;                %input in waveguide 2 f_'"KF[%  
s30=0.*s10;                %input in waveguide 3 kM`7EPk  
s2=s20; xJc.pvVPw  
s3=s30; 0b++ 17aV  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |Puj7Ru  
%energy in waveguide 1 LyP`{_"CM  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   PbEQkjE  
%energy in waveguide 2 PL@7 KD Q  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Efr3x{ j  
%energy in waveguide 3 !. eAOuq  
for m3 = 1:1:M3                                    % Start space evolution o9+Q{|r  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS veO?k.u(  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; j@t{@Ke  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 1eiw3WU;  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform PbN3;c3  
   sca2 = fftshift(fft(s2)); 4(|yD;  
   sca3 = fftshift(fft(s3)); vJThU$s-  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   e~ BJvZ}Q  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7LdzZS0OM  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); K?YEoz'y[  
   s3 = ifft(fftshift(sc3)); +{*)}[w{x  
   s2 = ifft(fftshift(sc2));                       % Return to physical space "XB4yExy  
   s1 = ifft(fftshift(sc1)); k =|K|  
end ?Cc :)  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); xVTo4-[p  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Hz?,#>{  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 2@ *<9-9  
   P1=[P1 p1/p10]; 5L3{w+V  
   P2=[P2 p2/p10]; yxY h?ka  
   P3=[P3 p3/p10]; nl9kYE [  
   P=[P p*p]; ~'{VaYk]v  
end }5hZo%w[n  
figure(1) 1tyNRoET  
plot(P,P1, P,P2, P,P3); Q@Dkl F  
5p{25N_t  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计