| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 NbkK&bz *HeVACxo % This Matlab script file solves the coupled nonlinear Schrodinger equations of V{ |[oIp % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of CmnHh~% % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear l'uOORI % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qrE0H x<>YUw8` %fid=fopen('e21.dat','w'); U=QA e N = 128; % Number of Fourier modes (Time domain sampling points) WFDCPQ@ M1 =3000; % Total number of space steps ,Xtj;@~- J =100; % Steps between output of space AY88h$a T =10; % length of time windows:T*T0 cz(G]{N T0=0.1; % input pulse width c1#+Vse MN1=0; % initial value for the space output location $>r5>6 dt = T/N; % time step V|: qow:F n = [-N/2:1:N/2-1]'; % Index ]0-<> t = n.*dt; YlKFw|= u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 D/:3RZF u20=u10.*0.0; % input to waveguide 2 x<F$aXOS u1=u10; u2=u20; H1&RI4XC U1 = u1; 0T9.M( U2 = u2; % Compute initial condition; save it in U kOI
!~Qk ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 'RLOV w=2*pi*n./T; $^h?:L:1n g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T y-a|Lu* L=4; % length of evoluation to compare with S. Trillo's paper onnugj3 dz=L/M1; % space step, make sure nonlinear<0.05 >lLo4M 3 for m1 = 1:1:M1 % Start space evolution B^q<2S; u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS "~\*If u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Ep ">v>" ca1 = fftshift(fft(u1)); % Take Fourier transform X-/Ban ca2 = fftshift(fft(u2)); vpLMhf` c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation doLNz4W c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift "DpKrVuG u2 = ifft(fftshift(c2)); % Return to physical space 8Z8Y[p u1 = ifft(fftshift(c1)); C6^j#rl
if rem(m1,J) == 0 % Save output every J steps. C}Qt "-% U1 = [U1 u1]; % put solutions in U array >|
m.?{^ U2=[U2 u2]; ab4LTF| MN1=[MN1 m1]; V^rW?Do z1=dz*MN1'; % output location 39D } end 1;&T^Gdj end PGX+p+wB hg=abs(U1').*abs(U1'); % for data write to excel CDCC1B G" ha=[z1 hg]; % for data write to excel S#2[%o t1=[0 t']; '5rUe\k hh=[t1' ha']; % for data write to excel file %VJW@S>j/ %dlmwrite('aa',hh,'\t'); % save data in the excel format Ue7 6py9 figure(1) %?=)!;[ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn RL&lKHA figure(2) XTo8,'UaP waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn d)KF3oA i!,HB|wQ 非线性超快脉冲耦合的数值方法的Matlab程序 _B$"e[:yX =x
H~ww (D 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 28oJFi] Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c#pj :f*H GYoseqZM zH=hIVc o,
LK[Q % This Matlab script file solves the nonlinear Schrodinger equations H[nz]s % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of t.U{Bu
P % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j-32S! % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TSQhX~RN VQ<5%+ C=1; HcO5?{2 M1=120, % integer for amplitude :Tb7r6 M3=5000; % integer for length of coupler w1i?#!| N = 512; % Number of Fourier modes (Time domain sampling points) m[8
@Unt dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. xa#gWIP* T =40; % length of time:T*T0. woau'7}XOu dt = T/N; % time step * nCx[ n = [-N/2:1:N/2-1]'; % Index , N
344y t = n.*dt; fl)zQcA ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 4_Y!el H) w=2*pi*n./T; ) b:4uK
A g1=-i*ww./2; x6e +7"#~ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; PEzia}m g3=-i*ww./2; `qu]Pxk P1=0; ) 4ncutb P2=0; 7I3 :u+ P3=1; B.K4!/cF P=0; w-FHhf for m1=1:M1 2.qpt'p[ p=0.032*m1; %input amplitude voh^|(:(TH s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 SRWg[H s1=s10; uV77E*+7\ s20=0.*s10; %input in waveguide 2 f_'"KF[% s30=0.*s10; %input in waveguide 3 kM`7EPk s2=s20; xJc.pvVPw s3=s30; 0b++17aV p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); |Puj7Ru %energy in waveguide 1 LyP`{_"CM p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); PbEQkjE %energy in waveguide 2 PL@7KDQ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); Efr3x{ j %energy in waveguide 3 !.eAOuq for m3 = 1:1:M3 % Start space evolution o9+Q{|r s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS veO?k.u( s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; j@t{@Ke s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 1eiw3WU; sca1 = fftshift(fft(s1)); % Take Fourier transform PbN3;c3 sca2 = fftshift(fft(s2)); 4(|yD; sca3 = fftshift(fft(s3)); vJThU$s- sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift e~
BJvZ}Q sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7LdzZS0OM sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); K?YEoz'y[ s3 = ifft(fftshift(sc3)); +{*)}[w{x s2 = ifft(fftshift(sc2)); % Return to physical space "XB4yExy s1 = ifft(fftshift(sc1)); k=|K| end ?Cc :) p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); xVTo4-[p p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Hz? ,#>{ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 2@*<9-9 P1=[P1 p1/p10]; 5L3{w+V P2=[P2 p2/p10]; yxY
h?ka P3=[P3 p3/p10]; nl9kYE
[ P=[P p*p]; ~'{VaYk]v end }5hZo%w[n figure(1) 1tyNRoET plot(P,P1, P,P2, P,P3); Q@Dkl
F 5p{25N_t 转自:http://blog.163.com/opto_wang/
|
|