首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 {kG;."S+K  
@ay|]w  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of W^|J/Y48  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of K051usm  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear UFk!dK+  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D?J#u;h~f  
!3?~#e{_  
%fid=fopen('e21.dat','w'); p  .aE  
N = 128;                       % Number of Fourier modes (Time domain sampling points) M%;"c?g  
M1 =3000;              % Total number of space steps >gGil|I  
J =100;                % Steps between output of space |P~q/Wff  
T =10;                  % length of time windows:T*T0 Avd *~  
T0=0.1;                 % input pulse width +yIL[D  
MN1=0;                 % initial value for the space output location  L,%Z9  
dt = T/N;                      % time step 'W+i[Ep5Q  
n = [-N/2:1:N/2-1]';           % Index lG < yJ~{  
t = n.*dt;   }_vM&.GFlL  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 6.UKB<sV  
u20=u10.*0.0;                  % input to waveguide 2 8iOO1I?+  
u1=u10; u2=u20;                 (6o:4|xl0  
U1 = u1;   /6smVz@O  
U2 = u2;                       % Compute initial condition; save it in U t@r#b67WJe  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. )ZeLaaP  
w=2*pi*n./T; ac3_L$X[  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @7]\y7D  
L=4;                           % length of evoluation to compare with S. Trillo's paper <YSg~T  
dz=L/M1;                       % space step, make sure nonlinear<0.05 fxOE]d8v  
for m1 = 1:1:M1                                    % Start space evolution e %&  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS }eI`Qg  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; CJ:uYXJJ:z  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform KDX$.$#  
   ca2 = fftshift(fft(u2)); IF^[^^v+H  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ` )]lUvR  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ^YqbjL  
   u2 = ifft(fftshift(c2));                        % Return to physical space +{'lZa  
   u1 = ifft(fftshift(c1)); :K: f^o]s  
if rem(m1,J) == 0                                 % Save output every J steps. ;i/"$K  
    U1 = [U1 u1];                                  % put solutions in U array 3m3 EXz  
    U2=[U2 u2]; >b3@>W  
    MN1=[MN1 m1]; > Z]P]e  
    z1=dz*MN1';                                    % output location ` v>/  
  end .$UTH@;7  
end l,^xX =,  
hg=abs(U1').*abs(U1');                             % for data write to excel 1x8(I&i  
ha=[z1 hg];                                        % for data write to excel \?r$&K]4  
t1=[0 t']; 4Sqvhz  
hh=[t1' ha'];                                      % for data write to excel file f8R+7Ykx  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format eS* *L 3  
figure(1) ktU9LW~  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn  Ls lM$  
figure(2)  .fbYB,0w  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn QZ#3Bn%B5  
w<btv]X1  
非线性超快脉冲耦合的数值方法的Matlab程序 LPb]mC6#  
,!jR:nApE  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ;B*L1'FF%t  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \f6lT3"VN  
sw[<VsxjR  
3e#x)H/dr  
1V#0\1sj  
%  This Matlab script file solves the nonlinear Schrodinger equations PkjT&e)  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of s z;=mMr/Z  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }{P&idkv  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D`1I;Tb#  
GOUY_&}tL  
C=1;                           ZCj>MA  
M1=120,                       % integer for amplitude ^ b=5 6~[  
M3=5000;                      % integer for length of coupler [^h/(a`  
N = 512;                      % Number of Fourier modes (Time domain sampling points) -Mr{+pf  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. f S(^["*G  
T =40;                        % length of time:T*T0. yjeqv-7  
dt = T/N;                     % time step B 9%yd*SJ  
n = [-N/2:1:N/2-1]';          % Index ]kyle3#-~  
t = n.*dt;   kt;}]O2%R  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ~3LhcU-  
w=2*pi*n./T; >l y&+3S  
g1=-i*ww./2; ]!n*V/g  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; P9 W<gIO  
g3=-i*ww./2; ;JMOsn}8  
P1=0; .;]YJy  
P2=0; pyu46iE)  
P3=1; ---Ks0\V  
P=0; nC-c8y  
for m1=1:M1                 .%-6&%1  
p=0.032*m1;                %input amplitude ,{#RrF e  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 d,Im&j_Z  
s1=s10; 8#[%?}tK  
s20=0.*s10;                %input in waveguide 2 f(EYx)gZ  
s30=0.*s10;                %input in waveguide 3 m0dFA<5-  
s2=s20; {s9y@c*15.  
s3=s30; -MVNXAKnZ  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \c5#\1<  
%energy in waveguide 1 Fm-q=3  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   mtiO7w"M\7  
%energy in waveguide 2 ?yK%]1O  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   _47j9m]f  
%energy in waveguide 3 ]%vGC^  
for m3 = 1:1:M3                                    % Start space evolution #dxJ#  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS F$"MFdc[  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6!gtve_  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; r7]?g~zb  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform Q"l"p:n%n  
   sca2 = fftshift(fft(s2)); >*<6 zQf  
   sca3 = fftshift(fft(s3)); < e7<t9  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   \ N-| iq  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); e0G}$ as  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ebl)6C  
   s3 = ifft(fftshift(sc3)); U{U:8==  
   s2 = ifft(fftshift(sc2));                       % Return to physical space khKv5K#)  
   s1 = ifft(fftshift(sc1)); [qjAq@@N#q  
end K%aPl~e  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5<:VJC<  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); JsWq._O{/  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Nv*E .|G  
   P1=[P1 p1/p10]; 76u/WC>B  
   P2=[P2 p2/p10]; X*c_^g{  
   P3=[P3 p3/p10]; 6x (L&>F  
   P=[P p*p]; Cnc\sMDJ\B  
end /I`bh  
figure(1) _taHf %\4  
plot(P,P1, P,P2, P,P3); \r1kbf7?  
F'Y 2f6B  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计