首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 s` , g4ce`  
6=Q6J  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of %O[1yZh \  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of <]oPr1  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear t^6ams$  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d=vD Pf  
WyQ8}]1b  
%fid=fopen('e21.dat','w'); jL 3 *m  
N = 128;                       % Number of Fourier modes (Time domain sampling points) K'"s9b8  
M1 =3000;              % Total number of space steps Z!'k N\z  
J =100;                % Steps between output of space $OGMw+$C ^  
T =10;                  % length of time windows:T*T0 U/v)6:j)4R  
T0=0.1;                 % input pulse width "J}B lB  
MN1=0;                 % initial value for the space output location 91a);d  
dt = T/N;                      % time step 0@u{(m  
n = [-N/2:1:N/2-1]';           % Index b=WkRj  
t = n.*dt;   Zcc7 7dRA  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Bv*VNfUm  
u20=u10.*0.0;                  % input to waveguide 2 vu*{+YpH  
u1=u10; u2=u20;                 w+\RSqz/  
U1 = u1;   9/&1lFKJ  
U2 = u2;                       % Compute initial condition; save it in U ?"}U?m=  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. V0#E7u`4  
w=2*pi*n./T; '}>8+vU`  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 3_eg'EP.E  
L=4;                           % length of evoluation to compare with S. Trillo's paper Tn3C0  
dz=L/M1;                       % space step, make sure nonlinear<0.05 j~;y~Cx?  
for m1 = 1:1:M1                                    % Start space evolution !+ UXu]kA  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS iz tF  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; .rDao]K  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform )kKeA  
   ca2 = fftshift(fft(u2)); Mcd K!V  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ^b.fci{1m  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   &XhxkN$8  
   u2 = ifft(fftshift(c2));                        % Return to physical space VWCC(YRU|$  
   u1 = ifft(fftshift(c1)); h=NXU9n%'  
if rem(m1,J) == 0                                 % Save output every J steps. -/7@ A  
    U1 = [U1 u1];                                  % put solutions in U array <`A!9+  
    U2=[U2 u2]; FklO#+<:  
    MN1=[MN1 m1]; 8L@@UUjr  
    z1=dz*MN1';                                    % output location {+9t!'   
  end sJg3WN  
end IeIv k55  
hg=abs(U1').*abs(U1');                             % for data write to excel "(+aWvb  
ha=[z1 hg];                                        % for data write to excel /cZcfCW  
t1=[0 t']; yW"}%) d  
hh=[t1' ha'];                                      % for data write to excel file ^#7&R"  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format d _=44( -  
figure(1)  GL&rT&  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 7tY~8gQel  
figure(2) )B5U0iIi  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn R*vfp?x  
H[r64~Sth  
非线性超快脉冲耦合的数值方法的Matlab程序 =G rg  
pl 1CEoe  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   f5nAD  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \5) ZI'q  
,=}+.ax  
-r{]9v2j  
u,@x7a,z  
%  This Matlab script file solves the nonlinear Schrodinger equations %U97{y  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kr]_?B(r  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V}G; oz&>)  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d[ce3':z  
vmtmiN8;d  
C=1;                           4-xg+*()  
M1=120,                       % integer for amplitude a'\fS7aE0l  
M3=5000;                      % integer for length of coupler Vao3 &#D8  
N = 512;                      % Number of Fourier modes (Time domain sampling points) D_I_=0qNd  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. d8f S79  
T =40;                        % length of time:T*T0. -EU~ %/=m+  
dt = T/N;                     % time step tpKQ$) ed  
n = [-N/2:1:N/2-1]';          % Index ?eR^\-e  
t = n.*dt;   YccD ^w[`B  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. C5#$NV99p  
w=2*pi*n./T; ? ~~,?Uxw!  
g1=-i*ww./2; r P&.`m88n  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \OF"hPq  
g3=-i*ww./2; 0OVxx>p/x  
P1=0; ezk:XDi4  
P2=0; 4*+)D8  
P3=1; I[v~nY~l`  
P=0; hKp-"  
for m1=1:M1                 ,tOc+3Qz$  
p=0.032*m1;                %input amplitude 6q^.Pg-Y  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 .n| M5X  
s1=s10; ,W;2A0A?X  
s20=0.*s10;                %input in waveguide 2 -M?s<R[&  
s30=0.*s10;                %input in waveguide 3 32):&X"AIh  
s2=s20; EXbhyg  
s3=s30; ,N5-(W  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Z <tJ+  
%energy in waveguide 1 <UO'&?G  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   E.rfS$<1  
%energy in waveguide 2 Ha/-v?E  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   T$9tO{  
%energy in waveguide 3 q\\52 :\  
for m3 = 1:1:M3                                    % Start space evolution UR.l*+<W7  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS A! !W\Jt  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; rc]`PV  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; HA(G q  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform "zBYhZr  
   sca2 = fftshift(fft(s2)); w#`E;fN'  
   sca3 = fftshift(fft(s3)); IH '&W  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ZZ{:f+=?$  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); b\9}zmG[u  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,Tc598D  
   s3 = ifft(fftshift(sc3)); FOd)zU*L2  
   s2 = ifft(fftshift(sc2));                       % Return to physical space !BW6l)=L  
   s1 = ifft(fftshift(sc1)); go$zi5{h#  
end *4F6U  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 2p|[yZ  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); JN-wToOF  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); |\/Y<_)JD  
   P1=[P1 p1/p10]; =;^#5dpt$  
   P2=[P2 p2/p10]; 1-60gI1)  
   P3=[P3 p3/p10]; ^< O=<tN\  
   P=[P p*p]; pElAY3  
end D^9r#&  
figure(1) WfE,U=e*  
plot(P,P1, P,P2, P,P3); 8yV?l7  
%JC-%TRWK  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计