首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 ?5gpk1  
v%Xe)D   
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of xb;m m9H  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of '1nU[,Wj  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear F4{<;4N0  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jgIzB1H  
boon =;{p  
%fid=fopen('e21.dat','w'); {P+[C O  
N = 128;                       % Number of Fourier modes (Time domain sampling points) U0T N8O}Z  
M1 =3000;              % Total number of space steps }aIf IJ  
J =100;                % Steps between output of space 'kK%sE   
T =10;                  % length of time windows:T*T0 WGK::?  
T0=0.1;                 % input pulse width >$F]Ss)$  
MN1=0;                 % initial value for the space output location [J Xrj{  
dt = T/N;                      % time step g&wQ^  
n = [-N/2:1:N/2-1]';           % Index 2N]s}/l  
t = n.*dt;   JH#?}L/0Fe  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 kMXl {  
u20=u10.*0.0;                  % input to waveguide 2 tTt~W5lo  
u1=u10; u2=u20;                 \:7EKzQ  
U1 = u1;   7L"/4w  
U2 = u2;                       % Compute initial condition; save it in U e:<> Yq+  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. J>35q'nN]F  
w=2*pi*n./T; xcA:Q`c.{  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W aU_Z/{0  
L=4;                           % length of evoluation to compare with S. Trillo's paper 1 doqznO  
dz=L/M1;                       % space step, make sure nonlinear<0.05 VCO/s9AL  
for m1 = 1:1:M1                                    % Start space evolution A\Gw+l<h,  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS N 5DS-gv  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; NBX/V^  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform nc)`ISI  
   ca2 = fftshift(fft(u2)); |zKcL3*  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation a6_`V;  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   5JXLfYTUI  
   u2 = ifft(fftshift(c2));                        % Return to physical space J;dFmZOk  
   u1 = ifft(fftshift(c1)); #4>F%_  
if rem(m1,J) == 0                                 % Save output every J steps. ><~hOK?v  
    U1 = [U1 u1];                                  % put solutions in U array 5"U7I{\  
    U2=[U2 u2]; +fN0> @s  
    MN1=[MN1 m1]; u.6%n. g  
    z1=dz*MN1';                                    % output location $P_Y8:  
  end WW=7QC i  
end U^D7T|P$V  
hg=abs(U1').*abs(U1');                             % for data write to excel 3$54*J  
ha=[z1 hg];                                        % for data write to excel zAewE@N#_  
t1=[0 t']; z?xd\x  
hh=[t1' ha'];                                      % for data write to excel file Z/x~:u_  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format `u-Y 5mY  
figure(1) c/RG1w  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn |a+8-@-Tj  
figure(2) WyP1"e^ 9  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 2X`M&)"X  
|wx1 [xZ  
非线性超快脉冲耦合的数值方法的Matlab程序 RiklwR#~r/  
Er)b( Kk  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   syF/jWM5  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {$^|^n5j  
UpILr\3U  
^_uzr}LE`  
dq2v[? *R  
%  This Matlab script file solves the nonlinear Schrodinger equations 5> UgBA  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of V]2Q92  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ) =[Tgh  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S(pfd2^  
y06 2/$*$  
C=1;                           rk|6!kry  
M1=120,                       % integer for amplitude s6I]H  
M3=5000;                      % integer for length of coupler Z5Cv$bUc  
N = 512;                      % Number of Fourier modes (Time domain sampling points) {<@~;iq  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. pyKMi /)bL  
T =40;                        % length of time:T*T0. 4.8,&{w<m  
dt = T/N;                     % time step dU,/!|.K  
n = [-N/2:1:N/2-1]';          % Index LPC7Bdjz  
t = n.*dt;   n2E2V<#   
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. \xt!b^d0  
w=2*pi*n./T; S<TfvQ\,"@  
g1=-i*ww./2; 3; A1[E6K  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ?~!h N,h  
g3=-i*ww./2; Nn$$yUkMX  
P1=0; g!$ "CX%8  
P2=0; 4{|lzo'&  
P3=1; eMs`t)rQ  
P=0; 04s N 4C  
for m1=1:M1                 \ys3&<;b  
p=0.032*m1;                %input amplitude m5S/T\,X  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 hRP0Djc  
s1=s10; ^JTfRZ :a  
s20=0.*s10;                %input in waveguide 2 -&c@c@dC  
s30=0.*s10;                %input in waveguide 3 }~7>S5  
s2=s20; ^/c|s!U^  
s3=s30; , Le_PJY)  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   E$cr3 t7Xy  
%energy in waveguide 1 ;RU)Q)a)  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Z"n]y4h  
%energy in waveguide 2 "-a>Uj")%  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   8)i\d`  
%energy in waveguide 3 v#~,)-D&  
for m3 = 1:1:M3                                    % Start space evolution m'pihFR:f  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 4ngiad6bR  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; oR+Fn}mG  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I0Vm^\8  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform { Z|C  
   sca2 = fftshift(fft(s2)); ^3e l-dZ  
   sca3 = fftshift(fft(s3)); ?f%@8%px  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   .N%$I6w  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); `p!.K9r7   
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); h.67] U7m  
   s3 = ifft(fftshift(sc3)); \UXQy{Ex  
   s2 = ifft(fftshift(sc2));                       % Return to physical space y"2c; *7[{  
   s1 = ifft(fftshift(sc1)); (vQShe\  
end DU;]Q:r{  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $lO\eQGxB  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Y$(G)Fs  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Va1|XQ<CL  
   P1=[P1 p1/p10]; D,NjDIG8  
   P2=[P2 p2/p10]; C ZJW`c/  
   P3=[P3 p3/p10]; zNB G;\ W  
   P=[P p*p]; qWWy}5SOm  
end \\[P^ tsF  
figure(1) ~WVrtYJu  
plot(P,P1, P,P2, P,P3); W7.]V)$wM  
$Q?UyEi  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计