| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 0+;.T1? wz9V)_V* % This Matlab script file solves the coupled nonlinear Schrodinger equations of QZ"Lh % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Bca\grA % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .gv J;A7 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :bW}*0b- W&}R7a@:<~ %fid=fopen('e21.dat','w'); D^04b<O<x N = 128; % Number of Fourier modes (Time domain sampling points) {_ww1'|A M1 =3000; % Total number of space steps ^g~Asz5] J =100; % Steps between output of space *@dRL3c^= T =10; % length of time windows:T*T0 "xa<Q%hk T0=0.1; % input pulse width |
3!a= MN1=0; % initial value for the space output location '+Gt+Gq+ dt = T/N; % time step 1*[h$Z&H? n = [-N/2:1:N/2-1]'; % Index X/];*='Q t = n.*dt; jWiB_8-6 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 WA8Qt\Q u20=u10.*0.0; % input to waveguide 2 E%3WJ%A u1=u10; u2=u20; HpSgGhL'J& U1 = u1; ub{<m^|) U2 = u2; % Compute initial condition; save it in U c|:H/Y2n| ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 7sC$hm] w=2*pi*n./T; 0LrTYrlj g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T aa.EtKl L=4; % length of evoluation to compare with S. Trillo's paper 2l{g$44 dz=L/M1; % space step, make sure nonlinear<0.05 VDx=Tsu- for m1 = 1:1:M1 % Start space evolution Q68&CO(rE u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS R6h(mPYA u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; O:+#k-? ca1 = fftshift(fft(u1)); % Take Fourier transform IW
Lv$bPZ/ ca2 = fftshift(fft(u2)); 'vhgR2/ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation l-XiQ#-{ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift n9050&_S u2 = ifft(fftshift(c2)); % Return to physical space lHV
bn7 u1 = ifft(fftshift(c1)); pTST\0? if rem(m1,J) == 0 % Save output every J steps. YCj"^RC^ U1 = [U1 u1]; % put solutions in U array =~?2i)-mC U2=[U2 u2]; z=N'evx~ MN1=[MN1 m1]; \Bw9%P~ G z1=dz*MN1'; % output location 245(ajxHC end ,`^B!U3m end Qa5<go{ hg=abs(U1').*abs(U1'); % for data write to excel yj `b-^$? ha=[z1 hg]; % for data write to excel DFwkd/3" t1=[0 t']; sI@m"A hh=[t1' ha']; % for data write to excel file ..Zuy|?w %dlmwrite('aa',hh,'\t'); % save data in the excel format /wljbb/s figure(1) w[uK3A v waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn KR^lmN figure(2) Fs|fo-+H}k waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn W7WHH \L/O RN5\,>+ 非线性超快脉冲耦合的数值方法的Matlab程序 Zi|MWaA.f j_L 'Ztu3 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 (i.MxGDd Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 y{uRh>l =IkQ;L& `a["`N^ oA(jtX[( % This Matlab script file solves the nonlinear Schrodinger equations %+L:Gm+^g# % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 2ELw}9 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2L[/.| % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 38L8AJqD 7Wmk"gp C=1; e-ljwCD M1=120, % integer for amplitude GLB7h9> M3=5000; % integer for length of coupler %ErLL@e N = 512; % Number of Fourier modes (Time domain sampling points) "w*VyD dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. I?G
m T =40; % length of time:T*T0. !l?Go<^*L dt = T/N; % time step kUUN2 n = [-N/2:1:N/2-1]'; % Index .</d$FM JE t = n.*dt; fZ`b~ZBwIj ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. <K=:_ w=2*pi*n./T; ZK[4 n5} g1=-i*ww./2; S`8
h]vX g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7m~+HM\ g3=-i*ww./2; ax[-907 P1=0; /+1+6MqRn* P2=0; 94=Wy- P3=1; %C" wUAY P=0; t4GG@` for m1=1:M1 5n"b$hMF p=0.032*m1; %input amplitude [c+[t3dz s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 Dkayk s1=s10; [M 65T@v s20=0.*s10; %input in waveguide 2 ;2(8&. s30=0.*s10; %input in waveguide 3 b/:9^&z s2=s20; #~ ^#%G s3=s30; VU J*\Sg p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); KS!mzq- %energy in waveguide 1 -K0>^2hh p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); J(ZYoJ %energy in waveguide 2 G#t!{Q}8 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
z2vrV?: %energy in waveguide 3 m=j xTZK for m3 = 1:1:M3 % Start space evolution -|\V' s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS {f((x1{HZx s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; gXZC%S s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; sWX iY sca1 = fftshift(fft(s1)); % Take Fourier transform 'h53:?~ sca2 = fftshift(fft(s2)); St7ZyN1 sca3 = fftshift(fft(s3)); OBqaf
)W sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift w! ,~#hbt6 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); u27K
0} sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ~2@+#1[g8z s3 = ifft(fftshift(sc3)); ?){V7<'?y s2 = ifft(fftshift(sc2)); % Return to physical space |k1(|)%G s1 = ifft(fftshift(sc1)); "_WOtJr end J.W0F# ? p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); PN:/lIO p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); [~m@'/ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1v)ur\>R P1=[P1 p1/p10]; |=fa`8mG P2=[P2 p2/p10]; ,#W>E,UU P3=[P3 p3/p10]; S+
gzl#r P=[P p*p]; 3B8\r}L end JnQ5r>!>3 figure(1) 89e<,f`h plot(P,P1, P,P2, P,P3); lqh+yX%*
L}5nq@Uu) 转自:http://blog.163.com/opto_wang/
|
|