首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 *AW v  
yq k8)\p  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 9RHDkK{5  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 8>#ZU]cG  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ao}<a1f  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VrP{U-`  
.R"VLE|  
%fid=fopen('e21.dat','w'); 5R~M@   
N = 128;                       % Number of Fourier modes (Time domain sampling points) :??W3ROn  
M1 =3000;              % Total number of space steps ksOsJ~3)  
J =100;                % Steps between output of space t,JX6ni  
T =10;                  % length of time windows:T*T0 Xm>zT'B_tJ  
T0=0.1;                 % input pulse width y$]<m+1  
MN1=0;                 % initial value for the space output location E z}1Xse  
dt = T/N;                      % time step JZ`h+fAt  
n = [-N/2:1:N/2-1]';           % Index @0 P4pt;(  
t = n.*dt;   %sOY:>  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ,3T"fT-(  
u20=u10.*0.0;                  % input to waveguide 2 hx9t{Zi  
u1=u10; u2=u20;                 rDbtT*vN  
U1 = u1;   {cOx0=  
U2 = u2;                       % Compute initial condition; save it in U Qc&Y|]p"  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. MQx1|>rG  
w=2*pi*n./T; k89N}MA   
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T cxSHSv 1;  
L=4;                           % length of evoluation to compare with S. Trillo's paper F%o!+%&7  
dz=L/M1;                       % space step, make sure nonlinear<0.05 s9CmR]C  
for m1 = 1:1:M1                                    % Start space evolution MooH`2Fd  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS nCWoco.xy  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;  6d;}mhH  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform "IzAvKPM  
   ca2 = fftshift(fft(u2)); v"ORn5  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation P4_B.5rrJ  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ~nmFZ] y  
   u2 = ifft(fftshift(c2));                        % Return to physical space .-M5.1mo\(  
   u1 = ifft(fftshift(c1)); UH%H9; ,$]  
if rem(m1,J) == 0                                 % Save output every J steps. JfWkg`LqL  
    U1 = [U1 u1];                                  % put solutions in U array >\<eR]12  
    U2=[U2 u2]; 5Ex[}y9L`  
    MN1=[MN1 m1]; uuwJ-  
    z1=dz*MN1';                                    % output location x cAs}y}  
  end 8} :$=n4&  
end _3 oo%?}  
hg=abs(U1').*abs(U1');                             % for data write to excel =O0A(ca"g  
ha=[z1 hg];                                        % for data write to excel ;BH.,{*@B  
t1=[0 t']; GLecBF+>F  
hh=[t1' ha'];                                      % for data write to excel file 4Xa] yA =  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format u_' -vZ_  
figure(1) iv+a5   
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^`id/  
figure(2) k6ry"W3  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !;*flr`/  
TBPu&+3  
非线性超快脉冲耦合的数值方法的Matlab程序 mJ<`/p?:  
Ly8=SIZ   
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   }M%3  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 hDB(y4/  
F}45.C rD  
T})q/oUqK  
*|W](id7e  
%  This Matlab script file solves the nonlinear Schrodinger equations $zCCeRP  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of L%Zr3Ct  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5U7,,oyh  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4PxP*j  
;.sYE/ZVi  
C=1;                           iE"]S )  
M1=120,                       % integer for amplitude h'&<A_C-7  
M3=5000;                      % integer for length of coupler TxF^zx\  
N = 512;                      % Number of Fourier modes (Time domain sampling points) ,P}7e)3  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. jXf@JxQ  
T =40;                        % length of time:T*T0. B2]52Fg-"  
dt = T/N;                     % time step 8,IF%Z+LI  
n = [-N/2:1:N/2-1]';          % Index +`Q]p" G  
t = n.*dt;   ])F+ C/Px1  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. -~8PI2  
w=2*pi*n./T; eEVB   
g1=-i*ww./2; jnOnV1I"  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =Mwuhk|*  
g3=-i*ww./2; SJP3mq/^K  
P1=0; q>BJ:_I i  
P2=0; ZKEoU!  
P3=1; V;SV0~&  
P=0; *Oy* \cX2[  
for m1=1:M1                 E3j`e>Yz  
p=0.032*m1;                %input amplitude :$K=LV#Iru  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +ho=0 >  
s1=s10; 2c[HA  
s20=0.*s10;                %input in waveguide 2 M| Gl&   
s30=0.*s10;                %input in waveguide 3 )cizd^{  
s2=s20; ?:`sE"  
s3=s30; q7KHx b  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   kB CU+FC  
%energy in waveguide 1 a_}C*+D  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   PZ6R+n8  
%energy in waveguide 2 }[z7V  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "$(D7yFO  
%energy in waveguide 3 ^"|q~2  
for m3 = 1:1:M3                                    % Start space evolution 5&p}^hS5  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .-HM{6J  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ; k.@=  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; x1g-@{8]j  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform t^MTR6y+8  
   sca2 = fftshift(fft(s2)); jSvq1$U  
   sca3 = fftshift(fft(s3)); 0/ 33Z Oc  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _GxC|d  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); :l]qTCmY  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); X);'[/]E*  
   s3 = ifft(fftshift(sc3)); b(|&e  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ~fD\=- S1  
   s1 = ifft(fftshift(sc1)); ",aNYJR>*!  
end am? k  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Sd ^I >;  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); EgPL+qL  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); jG&HPVr  
   P1=[P1 p1/p10]; [! ;sp~  
   P2=[P2 p2/p10]; fWA# n  
   P3=[P3 p3/p10]; ,\ 1X\  
   P=[P p*p]; S+.>{0!S"  
end U 5j4iz'  
figure(1) &8i$`6wY  
plot(P,P1, P,P2, P,P3); t=}]4&Yp  
+p>h` fc  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计