| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 *odwg$ P)&qy .+E0 % This Matlab script file solves the coupled nonlinear Schrodinger equations of 3q:>NB< % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of *WZ?C|6+ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear XXZ <r % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zUd{9B$ VW *d*! %fid=fopen('e21.dat','w'); !d3:`l< N = 128; % Number of Fourier modes (Time domain sampling points) X1~ WQ?ww M1 =3000; % Total number of space steps 137:T: J =100; % Steps between output of space D;WQNlTU T =10; % length of time windows:T*T0 Y@R9+7! T0=0.1; % input pulse width Wd/m]]W8Q MN1=0; % initial value for the space output location cuo'V*nWQ dt = T/N; % time step Jx4"~ 4 n = [-N/2:1:N/2-1]'; % Index I 7s}{pG t = n.*dt; a<mM
)[U u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 )NL_))\ u20=u10.*0.0; % input to waveguide 2 a) 5;Od u1=u10; u2=u20; >.f'_2#Z& U1 = u1; =6LF_=} U2 = u2; % Compute initial condition; save it in U f%5 s8) ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. e95@4f^K2 w=2*pi*n./T; -|nHwSrCZ/ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
/DN!" L=4; % length of evoluation to compare with S. Trillo's paper 8S*W+l19f dz=L/M1; % space step, make sure nonlinear<0.05 c6f[^Q%#j for m1 = 1:1:M1 % Start space evolution KJ;NcUq u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 5t-dvYgU u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; :~{x'`czJ ca1 = fftshift(fft(u1)); % Take Fourier transform e:kd0)9 ca2 = fftshift(fft(u2)); 76r RF c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 47
*, c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift hj|P*yKV u2 = ifft(fftshift(c2)); % Return to physical space Xj(" u1 = ifft(fftshift(c1)); !$5.\D if rem(m1,J) == 0 % Save output every J steps. Ua=w;h U1 = [U1 u1]; % put solutions in U array K\a=bA}DG U2=[U2 u2]; ej9|Y5D"S MN1=[MN1 m1]; J_ S]jE{ z1=dz*MN1'; % output location I!OV+utF end ~99DE78 end p!]$!qHO( hg=abs(U1').*abs(U1'); % for data write to excel gV-x1s+ ha=[z1 hg]; % for data write to excel H^N
5yOj/ t1=[0 t']; vsL)E:0 hh=[t1' ha']; % for data write to excel file mFdj+ &2\ %dlmwrite('aa',hh,'\t'); % save data in the excel format pk,]yi,ZF figure(1) 3Sb'){.MT+ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn q" aUA_}\ figure(2) !?u{2D waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn quEP" p2Fff4nQ 非线性超快脉冲耦合的数值方法的Matlab程序 gZLzE*NZ |JD"iP: 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 [^4)3cj7} Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 50l!f7 cB ,l=/? =T0;F0@#4 ~7}aW# % This Matlab script file solves the nonlinear Schrodinger equations i G%h- % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of VX<jg #( % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <*4BT}r,^2 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~Os1ir. <@puWm[p C=1;
!8V M1=120, % integer for amplitude ~;#OQ[ M3=5000; % integer for length of coupler :4V8Iz 71 N = 512; % Number of Fourier modes (Time domain sampling points) f*ICZM dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. AsOkOS3 T =40; % length of time:T*T0. UHh7x%$n dt = T/N; % time step sOY+X n = [-N/2:1:N/2-1]'; % Index Q*J8`J:#^R t = n.*dt; PS=N]e7k' ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. CC8)yO w=2*pi*n./T; OrJuE[R. g1=-i*ww./2; {Hu@|Q\~& g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; d}Y\;'2, g3=-i*ww./2; 3m#/1=@o P1=0; b,tf]Z- P2=0; Fzc8) *w P3=1; 5>e#SW P=0; 0S%xm'|N for m1=1:M1 iW
#|N^ p=0.032*m1; %input amplitude fQkfU;5 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 !G8=S'~~ s1=s10; PXRkK63 s20=0.*s10; %input in waveguide 2 vo]!IY s30=0.*s10; %input in waveguide 3 iiw\ s2=s20; bl8EzO s3=s30; RZgklEU p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); YcaomPo %energy in waveguide 1 @F-InfB8. p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); WEnI[JGe %energy in waveguide 2 L2,.af6+ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); Bo#,)%80 %energy in waveguide 3 <y}9Twdy for m3 = 1:1:M3 % Start space evolution q9h3/uTv s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS J2BCaAwEP, s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 2YbI."ob s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; _&wrA3@/L sca1 = fftshift(fft(s1)); % Take Fourier transform RXD*;B$v sca2 = fftshift(fft(s2)); +I$,Y~&`> sca3 = fftshift(fft(s3)); wqnHaWd* sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift xk:=.Qqh sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); d:X@zUR*) sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); i!a.6Gq s3 = ifft(fftshift(sc3)); )-s9CWJv s2 = ifft(fftshift(sc2)); % Return to physical space Z0'&@P$ s1 = ifft(fftshift(sc1)); mM $|cge" end sP'U9l p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); rsaN<6#_^Q p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); +v.<Fw2k# p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); q^ w@l P1=[P1 p1/p10]; %4QpDt P2=[P2 p2/p10]; {O=PVW2S P3=[P3 p3/p10]; f'oO/0lx P=[P p*p]; Ct<]('Hm( end 8)o%0#;0B figure(1) _t/~C*=:= plot(P,P1, P,P2, P,P3);
F%tV^$% TFAd
转自:http://blog.163.com/opto_wang/
|
|