首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 _9faBrzd  
Tu@8}C  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of Scp7X7{N  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &Flglj~7l  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear M8INk,si  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T:t]"d}}  
A3rPt&<a  
%fid=fopen('e21.dat','w'); ]p*l%(dhY  
N = 128;                       % Number of Fourier modes (Time domain sampling points) +~'865{  
M1 =3000;              % Total number of space steps 0n@rLF  
J =100;                % Steps between output of space DamC F  
T =10;                  % length of time windows:T*T0 3j,Q`+l/6d  
T0=0.1;                 % input pulse width 0T@Zb={  
MN1=0;                 % initial value for the space output location ]P#XVDn+;  
dt = T/N;                      % time step flk=>h|  
n = [-N/2:1:N/2-1]';           % Index ,^?^ dB  
t = n.*dt;   @L>q (Kg  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 N<f"]  
u20=u10.*0.0;                  % input to waveguide 2  '/`= R  
u1=u10; u2=u20;                 ?bPRxR  
U1 = u1;   $>*3/H  
U2 = u2;                       % Compute initial condition; save it in U MJ7Y#<u  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. x6(~;J  
w=2*pi*n./T; EzDk}uKY0R  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T z8{a(nKP  
L=4;                           % length of evoluation to compare with S. Trillo's paper kV?y0J.  
dz=L/M1;                       % space step, make sure nonlinear<0.05 dODt(J}%  
for m1 = 1:1:M1                                    % Start space evolution -%2[2p  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "Weg7mc#  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; iDMJicW!+F  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform pV.Av  
   ca2 = fftshift(fft(u2)); T~QWRBO  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation  =Qh\D  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   :/y1yM  
   u2 = ifft(fftshift(c2));                        % Return to physical space N U|d  
   u1 = ifft(fftshift(c1)); bx<RV7>0  
if rem(m1,J) == 0                                 % Save output every J steps. k spTp>~  
    U1 = [U1 u1];                                  % put solutions in U array J%x6  
    U2=[U2 u2]; @b"t]#V(E  
    MN1=[MN1 m1]; OTMJ6)n7  
    z1=dz*MN1';                                    % output location ]x\-$~E  
  end "u6`m?  
end S M!Txe#  
hg=abs(U1').*abs(U1');                             % for data write to excel r~N"ere26  
ha=[z1 hg];                                        % for data write to excel ~vs}.kb  
t1=[0 t']; 5Ycco,x  
hh=[t1' ha'];                                      % for data write to excel file }-ftyl7  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format [`p=(/I&L  
figure(1) I([!]z  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ulu9'ch  
figure(2) ?dD&p8{  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <.pU,T/  
?g?L3vRK  
非线性超快脉冲耦合的数值方法的Matlab程序 ,z3{u162  
0|2%vh>J  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   _$= _du  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >2~+.WePu  
0dhF&*h|L  
i-bJS6  
%FXfqF9  
%  This Matlab script file solves the nonlinear Schrodinger equations NLS%Sq  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of cs T2B[f9D  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j;s"q]"x]  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *:>"q ej  
qY~`8 x  
C=1;                           M%1}/!J3  
M1=120,                       % integer for amplitude !O-C,uSm  
M3=5000;                      % integer for length of coupler m-H-6`]  
N = 512;                      % Number of Fourier modes (Time domain sampling points) AK\$i$@6  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ,Vh.T&X5  
T =40;                        % length of time:T*T0. Vnx,5E&  
dt = T/N;                     % time step R&|mdY8  
n = [-N/2:1:N/2-1]';          % Index ^&bRX4pYo  
t = n.*dt;   =i_-F$pV  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. a["2VY6Eq@  
w=2*pi*n./T; s:p[DEj-  
g1=-i*ww./2; ~n[xtWO0  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; rA2 g&  
g3=-i*ww./2; M@4UGM`J  
P1=0; 2R=DB`3  
P2=0; rF aF Bd  
P3=1; Eq$&qV-?(  
P=0; = QQ5f5\l  
for m1=1:M1                 `!D s6  
p=0.032*m1;                %input amplitude Ggl~nxz  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 }e2(T  
s1=s10; Q-MQ9'  
s20=0.*s10;                %input in waveguide 2 w=LP"bqlI  
s30=0.*s10;                %input in waveguide 3 f 1w~!O9  
s2=s20; (>`5z(X  
s3=s30; H|R T?Q  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   X5X?&* %{  
%energy in waveguide 1 f>piHh?  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   l5\"9 ,<  
%energy in waveguide 2 )dY=0"4Z  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   u:m]CPz  
%energy in waveguide 3 ,hq)1u  
for m3 = 1:1:M3                                    % Start space evolution BT)X8>ct  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS U f|> (C  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; jy giG&H  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; T:/,2.l  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform A,%C,*)Cg  
   sca2 = fftshift(fft(s2)); ~_Lr=CD;4  
   sca3 = fftshift(fft(s3)); J9\a{c;.  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ({JHZ6uZ  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); YqPQ%  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); )RO<o O  
   s3 = ifft(fftshift(sc3)); TjHwjRa  
   s2 = ifft(fftshift(sc2));                       % Return to physical space /1x,h"T\<  
   s1 = ifft(fftshift(sc1)); $/=nU*pd  
end iCW*]U  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); t Z`z  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ?t+5s]  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); K4]g[z  
   P1=[P1 p1/p10]; bYi`R)  
   P2=[P2 p2/p10]; YO}1(m  
   P3=[P3 p3/p10]; u0#}9UKQ  
   P=[P p*p]; 'ihhoW8  
end td4[[ /  
figure(1) u%]shm  
plot(P,P1, P,P2, P,P3); c)A{p  
HsnLm67'  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计