| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 #1oyRD- ];8S<KiS~ % This Matlab script file solves the coupled nonlinear Schrodinger equations of -oR P ZtW % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 7@uhw">mX % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }*9mNE % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 N- :.z]j#_ @ UCr`> %fid=fopen('e21.dat','w'); X/' t1 N = 128; % Number of Fourier modes (Time domain sampling points) dcbE<W#ss M1 =3000; % Total number of space steps ].r~?9'/ J =100; % Steps between output of space N(=Z4Nk5 T =10; % length of time windows:T*T0 R7ze~[oF T0=0.1; % input pulse width e'0BP,\f_} MN1=0; % initial value for the space output location H4"'&A7$ dt = T/N; % time step @K=C`N_22 n = [-N/2:1:N/2-1]'; % Index -#<AbT t = n.*dt; [h[@?8vB u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 NY3.?@Z u20=u10.*0.0; % input to waveguide 2 {7Q)2NC u1=u10; u2=u20; {k8R6l1 U1 = u1; I )wc&>Lc U2 = u2; % Compute initial condition; save it in U @Tz}y"VG ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 5~GH*!h%; w=2*pi*n./T; BOdd~f%&tn g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Zb}U 4 L=4; % length of evoluation to compare with S. Trillo's paper VtnVl`/] dz=L/M1; % space step, make sure nonlinear<0.05 33z^Q`MTC for m1 = 1:1:M1 % Start space evolution !M@jW[s u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS [2\jQv\Y u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; )wyC8` &- ca1 = fftshift(fft(u1)); % Take Fourier transform @
q:S]YB ca2 = fftshift(fft(u2)); ~KP@wD~ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation HP2J`>oo c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift X([p0W
9V( u2 = ifft(fftshift(c2)); % Return to physical space L~|_C Rw u1 = ifft(fftshift(c1)); IC6r? if rem(m1,J) == 0 % Save output every J steps. oF L7dL U1 = [U1 u1]; % put solutions in U array t5RV-$ U2=[U2 u2]; </]a`h] MN1=[MN1 m1]; eY\w?pT2 z1=dz*MN1'; % output location ]@{l<ExP end zw[ #B # end =M9;`EmC hg=abs(U1').*abs(U1'); % for data write to excel >0E3Em<(}l ha=[z1 hg]; % for data write to excel H[2W(q6 t1=[0 t']; i[/`9 AK hh=[t1' ha']; % for data write to excel file $|m'~AmI %dlmwrite('aa',hh,'\t'); % save data in the excel format P"f4`q
figure(1) .s-*aoj waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn q1pB~eg5 figure(2) l/-qVAd!q waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn pS+hE4D QWwdtk 非线性超快脉冲耦合的数值方法的Matlab程序 TpcJ1*t ~@mNR^W-W 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 9";qR, Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 N"8'=wB oy\U\#k ]w_JbFmT L<k(stx~ % This Matlab script file solves the nonlinear Schrodinger equations EGVS8YP>h % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >u+%H
vzc % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear QjOY1Xze % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 bF'Jm*f )F+wk"`+6 C=1; u0F{.fe M1=120, % integer for amplitude KAg-M# M3=5000; % integer for length of coupler \+j:d9? N = 512; % Number of Fourier modes (Time domain sampling points) 'U-8w@\Z dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. =[,EFkU?B T =40; % length of time:T*T0. .iYp9?t dt = T/N; % time step "0LSy x n = [-N/2:1:N/2-1]'; % Index $Y M(NC t = n.*dt; GT,1t=|&V ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. L)c]i'WZ w=2*pi*n./T; *Hz]<b? g1=-i*ww./2; B#r"|x# [ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; XtqhK"f% g3=-i*ww./2; +GncQs
y P1=0; G=er0(7< P2=0; {r%T_BfY P3=1; %bS1$
v\n P=0; *!pn6OJ"Q} for m1=1:M1
Clb7=@f p=0.032*m1; %input amplitude m-bu{ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ^l<!:SS s1=s10; -S#jOr s20=0.*s10; %input in waveguide 2 ?&!e
f{ s30=0.*s10; %input in waveguide 3 Pkv+^[(4 s2=s20; "B>8on8O s3=s30; "U/yq p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); |
{Q}:_/q %energy in waveguide 1 qu&p)*M5 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); a7!{`fR5 %energy in waveguide 2 a"l\_D'.K8 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); \-SC-c %energy in waveguide 3 ZW4$Ks2]Y for m3 = 1:1:M3 % Start space evolution qh+&Z x~ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS nk;^sq4M: s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ;iW>i8 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 1Tr%lO5?6 sca1 = fftshift(fft(s1)); % Take Fourier transform Xck`"RU<xA sca2 = fftshift(fft(s2)); WL?qulC}h1 sca3 = fftshift(fft(s3)); NFF!g]QN sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift ^7a@?|,q8 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Ww"]3 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); uPxJwWXO s3 = ifft(fftshift(sc3)); 'uF75C s2 = ifft(fftshift(sc2)); % Return to physical space SLRF\mh!L s1 = ifft(fftshift(sc1)); eV~"T2!Sb end >.I9S{7 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f[
KI
T p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); U }AIOtUw p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); zI\+]U' P1=[P1 p1/p10]; [] el4.J, P2=[P2 p2/p10]; mZG n:f}= P3=[P3 p3/p10]; 8/T,{J\ P=[P p*p]; `X)A$lLr end E]}_hZU figure(1) :5BCW68le plot(P,P1, P,P2, P,P3); &;~?\>?I |o+*Iy) 转自:http://blog.163.com/opto_wang/
|
|