| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 ~.!?5(AH8z d`<#}-nh % This Matlab script file solves the coupled nonlinear Schrodinger equations of 0sY#MHPT& % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #d$d&W~gE % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Mj,2\ijNM % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %PSz o8.l r)(i{:@r` %fid=fopen('e21.dat','w'); >DkN+S N = 128; % Number of Fourier modes (Time domain sampling points) Q=MCMe M1 =3000; % Total number of space steps dcM+ylB J =100; % Steps between output of space ByC1I.B` T =10; % length of time windows:T*T0 hE9'F(87a T0=0.1; % input pulse width ^glbxbhI4 MN1=0; % initial value for the space output location }NR`81 dt = T/N; % time step |UABar b n = [-N/2:1:N/2-1]'; % Index rZb_1E< t = n.*dt; v] W1F,u u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 d#RF0,Y 9 u20=u10.*0.0; % input to waveguide 2 5IwX\ u1=u10; u2=u20; F9ZOSL
8Q U1 = u1; #a/n5c&6/ U2 = u2; % Compute initial condition; save it in U zS,%msT^A ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. !#l0@3 w=2*pi*n./T; %kaTQ"PB g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T tOu90gu L=4; % length of evoluation to compare with S. Trillo's paper M^0w/ dz=L/M1; % space step, make sure nonlinear<0.05 ^p'D <!6sK for m1 = 1:1:M1 % Start space evolution K[`4vsE u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS l;.[W| u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; pqRO[XEp2 ca1 = fftshift(fft(u1)); % Take Fourier transform uQXs>JuD ca2 = fftshift(fft(u2)); q{jk.:;' c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation >Lo6='G c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift W ??;4 u2 = ifft(fftshift(c2)); % Return to physical space k4]R]=Fh. u1 = ifft(fftshift(c1)); ksxO<Y if rem(m1,J) == 0 % Save output every J steps. w}]3jc84 U1 = [U1 u1]; % put solutions in U array weTK#O0@v U2=[U2 u2]; a @yE:HU MN1=[MN1 m1]; hqwz~Ky} z1=dz*MN1'; % output location @$K![]oD end Oi+Qy[y2 end WW,r9D:/ hg=abs(U1').*abs(U1'); % for data write to excel 2_B; ha=[z1 hg]; % for data write to excel btr x?k( t1=[0 t']; bw<~R2[ hh=[t1' ha']; % for data write to excel file ]JhDRJ\ %dlmwrite('aa',hh,'\t'); % save data in the excel format <S:,`v&Z figure(1) D0,oml waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 64IeCAMVo figure(2) #!K~_DL waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn :BC<+T= /cn/[O9 非线性超快脉冲耦合的数值方法的Matlab程序 -wG[>Y Ply2DQr 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Yg]FF`{p= Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }lrfO_ *$*nY [/5 Wr}a\}R :IOn`mRYu % This Matlab script file solves the nonlinear Schrodinger equations @$N*lrM2 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of */fs.G:P % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ).O\O)K % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;]8p:ME ?U2g8D nFY C=1; 2t
Z\{= M1=120, % integer for amplitude 9\W5 M3=5000; % integer for length of coupler &].1[&M] N = 512; % Number of Fourier modes (Time domain sampling points) 0B!mEg dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. t9=|* =;9) T =40; % length of time:T*T0. cl9;2D"Zm! dt = T/N; % time step BLYk
<m n = [-N/2:1:N/2-1]'; % Index O!@KM; t = n.*dt; #L)4| ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. E<fwl1<88 w=2*pi*n./T; &_Xv:? g1=-i*ww./2; IhFw {=2* g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -
KoA[UJ g3=-i*ww./2; G~mB=] P1=0; u9y-zhj_$ P2=0; dwsy(g7 P3=1; +{l3#Y P=0; |Jx2"0:M for m1=1:M1 [^"(%{H p=0.032*m1; %input amplitude HS|g
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 (B?xq1Q s1=s10; Fr Q-v]c s20=0.*s10; %input in waveguide 2 e]L3=R; s30=0.*s10; %input in waveguide 3 pC?1gc1G s2=s20; p|O-I&Xd s3=s30; CI3_lWax% p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); 2
3XAkpzp$ %energy in waveguide 1 4s+J-l p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); My43\p %energy in waveguide 2 2%No>w}/2 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); n46PQm%p %energy in waveguide 3 iLQt9Hyk for m3 = 1:1:M3 % Start space evolution H2tpP~!G s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS ]t!}D6p s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %RR|QY* s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; aDJjVD sca1 = fftshift(fft(s1)); % Take Fourier transform aN);P> sca2 = fftshift(fft(s2)); d)J] Y=j sca3 = fftshift(fft(s3)); #I@[^^Vw sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift onypwfIk)t sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); B0?@k sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); _ZE$\5>- s3 = ifft(fftshift(sc3)); $hY]EB s2 = ifft(fftshift(sc2)); % Return to physical space -*{(#k$ s1 = ifft(fftshift(sc1)); CIs1*:Q9 end SoON@h/ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); n<(5B|~y p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); LW8{a& p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); DD{@lM\vc P1=[P1 p1/p10]; 1:l&&/Wy P2=[P2 p2/p10]; di
P4]/%1 P3=[P3 p3/p10]; /iJhCB[QZ P=[P p*p]; K&~#@I; end 4lo}-@j figure(1) q,h.W JI plot(P,P1, P,P2, P,P3); L08;z oDiv9jm 转自:http://blog.163.com/opto_wang/
|
|