首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 &Z#g/Hc  
M qFuZg  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of E&#cU}ErN  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 2E;UHR  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tg.[.v Ks  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {OH "d  
T}M!A|   
%fid=fopen('e21.dat','w'); A )tGB&  
N = 128;                       % Number of Fourier modes (Time domain sampling points) fH}#.vy  
M1 =3000;              % Total number of space steps sWa`-gc  
J =100;                % Steps between output of space &,JrhMr\  
T =10;                  % length of time windows:T*T0 1-.6psE  
T0=0.1;                 % input pulse width 7vF+Di(B  
MN1=0;                 % initial value for the space output location bXmX@A$#Io  
dt = T/N;                      % time step lpv Z[^G  
n = [-N/2:1:N/2-1]';           % Index *QH@c3vUe\  
t = n.*dt;   MZZEqsD5[  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 WzDL(~m+Z  
u20=u10.*0.0;                  % input to waveguide 2 a9}7K/Y=d  
u1=u10; u2=u20;                 CD]"Q1 t}  
U1 = u1;   )O;6S$z9Y  
U2 = u2;                       % Compute initial condition; save it in U Wl\.*^`k  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :2ILN.&  
w=2*pi*n./T; 8eGq.+5G  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~ HN  
L=4;                           % length of evoluation to compare with S. Trillo's paper $F2 A  
dz=L/M1;                       % space step, make sure nonlinear<0.05 NGIt~"e7R4  
for m1 = 1:1:M1                                    % Start space evolution ;&RBg+Pr  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `#Z=cq^_  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =r:(ga  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform !8~A`  
   ca2 = fftshift(fft(u2)); b\^X1eo  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ( y0  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   !Pd@0n4  
   u2 = ifft(fftshift(c2));                        % Return to physical space &6deds  
   u1 = ifft(fftshift(c1)); Fab gJu  
if rem(m1,J) == 0                                 % Save output every J steps. S8>1l?UH  
    U1 = [U1 u1];                                  % put solutions in U array w5Lev}Rb  
    U2=[U2 u2]; N)CM^$(T|  
    MN1=[MN1 m1]; B6UTooj  
    z1=dz*MN1';                                    % output location 2PZ#w(An&  
  end  r`-=<@[  
end Wz{,N07Q#{  
hg=abs(U1').*abs(U1');                             % for data write to excel _Fe%Ek1Yy  
ha=[z1 hg];                                        % for data write to excel [A\DuJx  
t1=[0 t']; (r*"}"ZG  
hh=[t1' ha'];                                      % for data write to excel file S@4p.NMU  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format ^-nL!>FYY  
figure(1) `s8*n(\h  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn q8 &\;GK|  
figure(2) %/;*Ewwb  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn FT8<a }o  
9 t8NK{  
非线性超快脉冲耦合的数值方法的Matlab程序 2 Sgv  
D*0[7:NSO  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   db*yA@2Lg  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "~2SHM@q  
| -l9Z  
e92,@  
-sqd?L.p  
%  This Matlab script file solves the nonlinear Schrodinger equations w 3kX!%a:  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of K&4FFZ  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0q6xXNAX  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {q!GTO  
zu_bno!  
C=1;                           z&wJ"[nOC  
M1=120,                       % integer for amplitude utzf7?nIS  
M3=5000;                      % integer for length of coupler E[NszM[P  
N = 512;                      % Number of Fourier modes (Time domain sampling points) u(W>HVEG  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. HkPdqNC&  
T =40;                        % length of time:T*T0. b9R0"w!ml  
dt = T/N;                     % time step joA>-k04  
n = [-N/2:1:N/2-1]';          % Index :lU#Dm]  
t = n.*dt;   R :*1Y\o(  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `(uN_zvH  
w=2*pi*n./T; 6c6w w"  
g1=-i*ww./2; 9y}/ G  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; XOL_vS24  
g3=-i*ww./2; U6?3 z  
P1=0; A$3ll|%j  
P2=0; O $ARk+  
P3=1; #;0F-pt  
P=0; f4;V7DJ  
for m1=1:M1                 Vd;N T$S$  
p=0.032*m1;                %input amplitude RF[Uy?es  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +[Izz~ _p  
s1=s10; ~K@p`CRbV  
s20=0.*s10;                %input in waveguide 2 K-b`KcX  
s30=0.*s10;                %input in waveguide 3 Hb3..o:  
s2=s20; oH(a*i  
s3=s30; oD3]2o/  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   cO8yu`4!e  
%energy in waveguide 1 Df@b;-E  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   $9@3dM*E?Z  
%energy in waveguide 2 &3Ry0?RET  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Nd He::  
%energy in waveguide 3 cTja<*W^xv  
for m3 = 1:1:M3                                    % Start space evolution 0nPg`@e.  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS weMufT  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 4axuE]  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;  c?*x2Vk  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform w~~[0e+E  
   sca2 = fftshift(fft(s2)); BsR3$  
   sca3 = fftshift(fft(s3)); q*!Vyk  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   =5O&4G`}  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); kl|m @Nxp  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); rRX F@  
   s3 = ifft(fftshift(sc3)); vt#&YXu{A  
   s2 = ifft(fftshift(sc2));                       % Return to physical space JMfv|>=  
   s1 = ifft(fftshift(sc1)); gm$<U9L\v  
end +^q- v-  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); C:_-F3|]cJ  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  z $iI  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); _xM}*_<VP  
   P1=[P1 p1/p10]; ]P2Wa   
   P2=[P2 p2/p10]; ikb;,Js  
   P3=[P3 p3/p10]; m'KEN<)s  
   P=[P p*p]; zG7y$\A  
end \;Sl5*kr  
figure(1) L*6>S_l[  
plot(P,P1, P,P2, P,P3); n){u!z)Al  
)&[ol9+\  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计