| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 _ p%=RIR X5@+M!` % This Matlab script file solves the coupled nonlinear Schrodinger equations of OSreS5bg % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 4eH:eCZze % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0z&]imU % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]!CMo+ oGt,^!V1 %fid=fopen('e21.dat','w'); mq
0 d ea N = 128; % Number of Fourier modes (Time domain sampling points) *\Z9=8yK M1 =3000; % Total number of space steps $eHYy,, J =100; % Steps between output of space T_iX1blrgh T =10; % length of time windows:T*T0 QS7<7+ T0=0.1; % input pulse width dRj2%Q f MN1=0; % initial value for the space output location OlRtVp1 dt = T/N; % time step )Y4;@pEU n = [-N/2:1:N/2-1]'; % Index 4JQd/; t = n.*dt; (;\"
K? u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 pmda9V4 u20=u10.*0.0; % input to waveguide 2 \LuaI u1=u10; u2=u20; B xAyjA6 U1 = u1; R!&9RvNw U2 = u2; % Compute initial condition; save it in U |wbXu: ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 0O>T{< w=2*pi*n./T; "&Q sv-9t g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 7R5m|h`M L=4; % length of evoluation to compare with S. Trillo's paper |"]#jx*8KC dz=L/M1; % space step, make sure nonlinear<0.05 F8xz^UQO for m1 = 1:1:M1 % Start space evolution gq%U5J"x;J u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS df\ ^uyD; u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; W%ml/ 4 ca1 = fftshift(fft(u1)); % Take Fourier transform UHyGW$B ca2 = fftshift(fft(u2));
V.w
L c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation mD5Vsy{Pb c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift t@X{qm:%Z u2 = ifft(fftshift(c2)); % Return to physical space :m]KVcF. u1 = ifft(fftshift(c1)); {L'uuG\9U if rem(m1,J) == 0 % Save output every J steps. ?)NgODU U1 = [U1 u1]; % put solutions in U array zv.#9^/y U2=[U2 u2]; {Jbouj?V! MN1=[MN1 m1]; @LSfP z1=dz*MN1'; % output location "+XF'ZO end _tlr8vL end ,
wXixf2 hg=abs(U1').*abs(U1'); % for data write to excel +MR]h
[ ha=[z1 hg]; % for data write to excel `.i #3P t1=[0 t']; J]W?
Vvv hh=[t1' ha']; % for data write to excel file [_T6 %dlmwrite('aa',hh,'\t'); % save data in the excel format 8u%rh[g' figure(1) ~"J7=u1o waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn >//yvkZ9, figure(2) = }ELu@\V[ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn r S>@>8k2, nt:ZO,C:R 非线性超快脉冲耦合的数值方法的Matlab程序 [L>mrHqG y$Fk0s*> 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 KzZfpdI92 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %y)]Q| 8B?*?,n5 ]FNe&o1zX =Q,D3F
-+f % This Matlab script file solves the nonlinear Schrodinger equations uK%0,!q % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of XqLR2d % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &8;Fi2}(L % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 uS<og P '7<^x>D|
C=1; ;fYJ]5> M1=120, % integer for amplitude QVF561Yz M3=5000; % integer for length of coupler %0p9\I N = 512; % Number of Fourier modes (Time domain sampling points) RD6>\9 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. vYybQ&E/ T =40; % length of time:T*T0. ,\-4X dt = T/N; % time step '/s/o]'sUd n = [-N/2:1:N/2-1]'; % Index dUQ)&Hv t = n.*dt; =}"P;4: ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. /hur6yI8 w=2*pi*n./T; sa}.o Zp Q g1=-i*ww./2; ]`q]\EH g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; tUksIUYD\ g3=-i*ww./2; |H(i)yu"5' P1=0; lDL(,ZZS` P2=0; C1#f/o -> P3=1; *:%I|5 P=0; !
o?E. for m1=1:M1 HBNX a p=0.032*m1; %input amplitude IL,iu s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 [{0/'+;9 s1=s10; wE-y4V e s20=0.*s10; %input in waveguide 2 4~AY:
ib| s30=0.*s10; %input in waveguide 3 F0wW3+G s2=s20; l1.eAs5U s3=s30; _}gfec4o p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); (QdLz5\ %energy in waveguide 1 .E9$j<SP- p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); WOeG3jMz? %energy in waveguide 2 E#A}2|7,g p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); iL<FFN~{ %energy in waveguide 3 B~E>=85z for m3 = 1:1:M3 % Start space evolution (tF/2cZk s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS -UWyBM3c@ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; cJ>^@pd{ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
yjOZed;M sca1 = fftshift(fft(s1)); % Take Fourier transform pJ
x H sca2 = fftshift(fft(s2)); /uPMzl sca3 = fftshift(fft(s3)); Ld'3uM/ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift \'X-><1 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); sHPlNwyy sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /IG3>|R s3 = ifft(fftshift(sc3)); E*yot[kj s2 = ifft(fftshift(sc2)); % Return to physical space _ t.E_K s1 = ifft(fftshift(sc1)); wH\
K'/ end a
*bc#!e p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); /GO((v+J p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); H?
%I((+ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); W6)XMl}n P1=[P1 p1/p10]; 5! ]T%.rM P2=[P2 p2/p10]; Va4AE)[/* P3=[P3 p3/p10]; .G}$jO} P=[P p*p]; -aDBdZ;y end wuhL r( figure(1) OTEx9 plot(P,P1, P,P2, P,P3); 'N&s$XB, BA9;=orx 转自:http://blog.163.com/opto_wang/
|
|