| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 *AW v yq k8)\p % This Matlab script file solves the coupled nonlinear Schrodinger equations of 9RHDkK{5 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 8>#ZU]cG % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ao}<a1f % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VrP{U-` .R"VLE| %fid=fopen('e21.dat','w'); 5R~M@ N = 128; % Number of Fourier modes (Time domain sampling points) :??W3ROn M1 =3000; % Total number of space steps ksOsJ~3) J =100; % Steps between output of space t,JX6ni T =10; % length of time windows:T*T0 Xm>zT'B_tJ T0=0.1; % input pulse width y$]<m+1 MN1=0; % initial value for the space output location E
z}1Xse dt = T/N; % time step JZ`h+fAt n = [-N/2:1:N/2-1]'; % Index @0P4pt;( t = n.*dt; %sOY:>
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 ,3T"fT-( u20=u10.*0.0; % input to waveguide 2 hx9t{Zi u1=u10; u2=u20; rDbtT*vN U1 = u1; {cOx0= U2 = u2; % Compute initial condition; save it in U Q c&Y|]p" ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. MQx1|>rG w=2*pi*n./T; k89N}MA g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T cxSHSv1; L=4; % length of evoluation to compare with S. Trillo's paper F%o!+%&7 dz=L/M1; % space step, make sure nonlinear<0.05 s9CmR]C for m1 = 1:1:M1 % Start space evolution MooH`2Fd u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS nCWoco.xy u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6d;}mhH ca1 = fftshift(fft(u1)); % Take Fourier transform "IzAvKPM ca2 = fftshift(fft(u2)); v"ORn5 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation P4_B.5rrJ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift ~nmFZ]y u2 = ifft(fftshift(c2)); % Return to physical space .-M5.1mo\( u1 = ifft(fftshift(c1)); UH%H9;
,$] if rem(m1,J) == 0 % Save output every J steps. JfWkg`LqL U1 = [U1 u1]; % put solutions in U array >\<eR]12 U2=[U2 u2]; 5Ex[}y9L` MN1=[MN1 m1]; uuwJ- z1=dz*MN1'; % output location x
cAs}y} end 8}:$=n4& end _3 oo%?} hg=abs(U1').*abs(U1'); % for data write to excel =O0A(ca"g ha=[z1 hg]; % for data write to excel ;BH.,{*@B t1=[0 t']; GLecBF+>F hh=[t1' ha']; % for data write to excel file 4Xa]yA = %dlmwrite('aa',hh,'\t'); % save data in the excel format u_' -vZ_ figure(1) iv +a5 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ^`id/ figure(2) k6ry"W3 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn !;*flr`/ TBPu&+3 非线性超快脉冲耦合的数值方法的Matlab程序 mJ<`/p?: Ly8=SIZ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 }M% 3 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 hDB(y4/ F}45.CrD T})q/oUqK *|W](id7e % This Matlab script file solves the nonlinear Schrodinger equations $zCCeRP % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of L%Zr3Ct % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5U7,,oyh % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4PxP*j ;.sYE/ZVi C=1; iE"]S ) M1=120, % integer for amplitude h'&<A_C-7 M3=5000; % integer for length of coupler TxF^zx\ N = 512; % Number of Fourier modes (Time domain sampling points) ,P}7e)3 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. jXf@JxQ T =40; % length of time:T*T0. B2]52Fg-" dt = T/N; % time step 8,IF%Z+LI n = [-N/2:1:N/2-1]'; % Index +`Q]p "G t = n.*dt; ])F+ C/Px1 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. -~8PI2 w=2*pi*n./T; eEVB g1=-i*ww./2; jnOnV1I" g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =Mwuhk|* g3=-i*ww./2; SJP3mq/^K P1=0; q>BJ:_I
i P2=0; ZKEoU! P3=1; V;SV0~& P=0; *Oy*
\cX2[ for m1=1:M1 E3j`e>Yz p=0.032*m1; %input amplitude :$K=LV#Iru s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 +ho=0> s1=s10; 2c[HA s20=0.*s10; %input in waveguide 2 M| Gl&
s30=0.*s10; %input in waveguide 3 )cizd^{ s2=s20; ?:`sE" s3=s30; q7KHx b p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); kB CU+FC %energy in waveguide 1 a_}C*+D p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); PZ6R+n8 %energy in waveguide 2 }[z7V p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); "$(D7yFO %energy in waveguide 3 ^"|q~2 for m3 = 1:1:M3 % Start space evolution 5&p}^hS5 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS .-HM{6J s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ;
k.@= s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; x1g-@{8]j sca1 = fftshift(fft(s1)); % Take Fourier transform t^MTR6y+8 sca2 = fftshift(fft(s2)); jSvq1$U sca3 = fftshift(fft(s3)); 0/ 33Z Oc sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift _GxC|d sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); :l]qTCmY sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); X);'[/]E* s3 = ifft(fftshift(sc3)); b(|&e s2 = ifft(fftshift(sc2)); % Return to physical space ~fD\=- S1 s1 = ifft(fftshift(sc1)); ",aNYJR>*! end am? k p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Sd^I>; p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); EgPL+qL p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); jG&HPVr P1=[P1 p1/p10]; [!;sp~ P2=[P2 p2/p10]; fWA#n P3=[P3 p3/p10]; ,\
1X\ P=[P p*p]; S+.>{0!S" end U5j4iz' figure(1) &8i$`6wY plot(P,P1, P,P2, P,P3); t=}]4&Yp +p>h` fc 转自:http://blog.163.com/opto_wang/
|
|