首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 < P5;8  
,\DB8v6l\A  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 8y!fqXm%)  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 38Z"9  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rA9x T`  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Em@h5V  
h ;5 -X7  
%fid=fopen('e21.dat','w'); @WU_GQas3  
N = 128;                       % Number of Fourier modes (Time domain sampling points) ,/W< E  
M1 =3000;              % Total number of space steps 4W.;p"S2  
J =100;                % Steps between output of space ooIMN =  
T =10;                  % length of time windows:T*T0 .KT+,Y  
T0=0.1;                 % input pulse width !r.}y|t?;  
MN1=0;                 % initial value for the space output location NI(`o8fN  
dt = T/N;                      % time step i:kWO7aP  
n = [-N/2:1:N/2-1]';           % Index J5Fg]O*  
t = n.*dt;   DcbL$9UI  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #s#z@F  
u20=u10.*0.0;                  % input to waveguide 2 MQY1he2M  
u1=u10; u2=u20;                 2,&lGyV#  
U1 = u1;   &,."=G  
U2 = u2;                       % Compute initial condition; save it in U 2c%}p0<;|?  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. d=qpTb;(  
w=2*pi*n./T; R C (v#G  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T hCT%1R}rKr  
L=4;                           % length of evoluation to compare with S. Trillo's paper G>mgoN  
dz=L/M1;                       % space step, make sure nonlinear<0.05 kM3BP& 3m1  
for m1 = 1:1:M1                                    % Start space evolution HxY,R ^  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS L''0`a. +S  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; q qzQKN  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform a LmVOL{  
   ca2 = fftshift(fft(u2)); mZ;yk(  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 2 J4|7UwJ  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   G<jpJ  
   u2 = ifft(fftshift(c2));                        % Return to physical space ZVp\ 5V*  
   u1 = ifft(fftshift(c1)); 0!vC0T[  
if rem(m1,J) == 0                                 % Save output every J steps. kw-/h+lG  
    U1 = [U1 u1];                                  % put solutions in U array - Ez|  
    U2=[U2 u2]; NxXVW  
    MN1=[MN1 m1]; eF8`an5S  
    z1=dz*MN1';                                    % output location INbjk;k  
  end ^ 2kWD8c*  
end 0dcXgP  
hg=abs(U1').*abs(U1');                             % for data write to excel kmc9P&  
ha=[z1 hg];                                        % for data write to excel gv[7h'}<  
t1=[0 t']; a ^)Mx9  
hh=[t1' ha'];                                      % for data write to excel file 4G>|It  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format ==XP}w)m  
figure(1) |O4A+S  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn rd,mbH[<C  
figure(2) 7 $9fGo  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn oyr2lfz*  
HJJ ^pk&  
非线性超快脉冲耦合的数值方法的Matlab程序 0X0D8H(7Q  
:x{Q  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   4{vd6T}V!  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m@O\Bi}=}  
#`p>VXBj!  
bf74 "  
<Y#R]gf1  
%  This Matlab script file solves the nonlinear Schrodinger equations z'qVEHc)  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kQ#eWk J,  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :>X7(&j8  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h+74W0 $  
4iLU "~  
C=1;                           M)J*Df0@  
M1=120,                       % integer for amplitude W1@;94Sb~  
M3=5000;                      % integer for length of coupler sd[QtK^  
N = 512;                      % Number of Fourier modes (Time domain sampling points) wFJK!9KA8  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Agi1r]W  
T =40;                        % length of time:T*T0. gNqV>p  
dt = T/N;                     % time step zJnVO$A'  
n = [-N/2:1:N/2-1]';          % Index P+b^;+\1s  
t = n.*dt;   {;4PP463  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 4w z 6%  
w=2*pi*n./T; DO\EB6xH>%  
g1=-i*ww./2; 'u3+k.  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9#(QS+q~  
g3=-i*ww./2; ~d8>#v=Q`  
P1=0; +E [bLz^  
P2=0; <dN=d3S  
P3=1; =N{eiJ.(p  
P=0; WsV3>=@f  
for m1=1:M1                 ]T51;j'48  
p=0.032*m1;                %input amplitude 2Y4&Sba^Y  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 btF%}<o)  
s1=s10; ?8,N4T0)  
s20=0.*s10;                %input in waveguide 2 'YR5i^:t  
s30=0.*s10;                %input in waveguide 3 -$)Et|  
s2=s20; if}]8  
s3=s30; *i{.@RX?  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   yy } 0_  
%energy in waveguide 1 o3yqG#dA  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   `_'Dj>  
%energy in waveguide 2 /a(zLHyz)  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   i/J NG  
%energy in waveguide 3 LgNNtZ&F  
for m3 = 1:1:M3                                    % Start space evolution l1)pr{A  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS / 3k\kkv!  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z= p  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; CCY|FK  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 9AYe,R  
   sca2 = fftshift(fft(s2)); \Ep/'Tj&  
   sca3 = fftshift(fft(s3)); O|RO j  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   lDU:EJ&DHE  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 8-5 jr_*  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #Q@6:bBzv  
   s3 = ifft(fftshift(sc3)); t60/f&A#7H  
   s2 = ifft(fftshift(sc2));                       % Return to physical space DP_Pqn8p&M  
   s1 = ifft(fftshift(sc1)); 62x< rph  
end L||yQH7n  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); |<|,RI?  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); is?&%VY  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); R$fIb}PDr  
   P1=[P1 p1/p10]; mF}k}0  
   P2=[P2 p2/p10]; [T}]Ma*CS  
   P3=[P3 p3/p10]; W>s'4C`  
   P=[P p*p]; Kg`x9._2  
end CDYx/yO  
figure(1) W79A4l<  
plot(P,P1, P,P2, P,P3); &8AS=v  
{}o>ne nx\  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计