首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 hYI0S7{G  
\a}_=O  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of kW!`vQm~  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of L  (#DVF  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear BS@x&DB  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {j!jm5  
YWXY4*G  
%fid=fopen('e21.dat','w'); Pcs62aE  
N = 128;                       % Number of Fourier modes (Time domain sampling points) &l0-0 T>  
M1 =3000;              % Total number of space steps Q~y) V  
J =100;                % Steps between output of space z K+C&X  
T =10;                  % length of time windows:T*T0 l5*sCp*Z  
T0=0.1;                 % input pulse width D J:N  
MN1=0;                 % initial value for the space output location %!vgAH4  
dt = T/N;                      % time step JR_s-&GaM  
n = [-N/2:1:N/2-1]';           % Index l )m]<E X  
t = n.*dt;   !VXs yH3r5  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 p[J 8 r{'  
u20=u10.*0.0;                  % input to waveguide 2 Xe J|Z)qZ  
u1=u10; u2=u20;                 ;G=:>m~  
U1 = u1;   O5lP92],  
U2 = u2;                       % Compute initial condition; save it in U 2`ED?F68gH  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. j/Dc';,d.(  
w=2*pi*n./T; qVidubsW  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T %_>+K;<  
L=4;                           % length of evoluation to compare with S. Trillo's paper l"ZfgJ}W  
dz=L/M1;                       % space step, make sure nonlinear<0.05 IcDAl~uG  
for m1 = 1:1:M1                                    % Start space evolution }iZ>Gm '5  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS J:  T  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; j0eGg::  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform ee7{5  
   ca2 = fftshift(fft(u2)); n1mqe*Mvs/  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation +kXj+2  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Q 6)5*o8n  
   u2 = ifft(fftshift(c2));                        % Return to physical space |rhCQ"H  
   u1 = ifft(fftshift(c1)); $zR[2{bg  
if rem(m1,J) == 0                                 % Save output every J steps. ^-Knx!z  
    U1 = [U1 u1];                                  % put solutions in U array ]\8{z"  
    U2=[U2 u2]; [&B}{6wry  
    MN1=[MN1 m1]; B\ITXmd   
    z1=dz*MN1';                                    % output location `n{yls7.  
  end MUeS8:q-N  
end mH/$_x)o  
hg=abs(U1').*abs(U1');                             % for data write to excel <.l$jW]  
ha=[z1 hg];                                        % for data write to excel $d +n},[C{  
t1=[0 t']; :/1/i&a  
hh=[t1' ha'];                                      % for data write to excel file xwm-)~L4T  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format cfg_xrW0^  
figure(1) \B$Q%\-PX  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?#cX_  
figure(2) uINm>$G,5  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 82q_"y>6  
FX6 *`  
非线性超快脉冲耦合的数值方法的Matlab程序 jcuC2t  
a BHV  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Z\)emps  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _]Ei,Ua  
G.}Ex!8R7_  
4 <&8`Q  
'g$a.75/-  
%  This Matlab script file solves the nonlinear Schrodinger equations G|"`kAa  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of c/g"/ICs  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear cHG>iW9C  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 02EbmP  
;?A?1q8*  
C=1;                           m&h5u,  
M1=120,                       % integer for amplitude <> &!+|#  
M3=5000;                      % integer for length of coupler h>l  
N = 512;                      % Number of Fourier modes (Time domain sampling points) S&rfMRP  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .-0;:>  
T =40;                        % length of time:T*T0. 6Ee UiLd  
dt = T/N;                     % time step R\oas"  
n = [-N/2:1:N/2-1]';          % Index ZV=)`E`I|  
t = n.*dt;   OFtAT@ =O  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. z+J4XpX0,  
w=2*pi*n./T; z [qO5z~I  
g1=-i*ww./2; OSvv\3=  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; g[W`4  
g3=-i*ww./2; 9=-!~ _'1-  
P1=0; HKr6h?Si^  
P2=0; hgz7dF  
P3=1; kp+\3z_  
P=0; x4HVB  
for m1=1:M1                 k?Bc^7l:  
p=0.032*m1;                %input amplitude  ?2g\y@  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ` _+j+  
s1=s10; Q\>Kd N{  
s20=0.*s10;                %input in waveguide 2 h.\9a3B:r  
s30=0.*s10;                %input in waveguide 3 [}/\W`C  
s2=s20; igV4nL  
s3=s30; #hBDOXHPf  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ={a8=E!;  
%energy in waveguide 1 \\qw"w9  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   /}]Irj4m  
%energy in waveguide 2 LZ@4,Uj  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   @nJ#kd[  
%energy in waveguide 3 RyGce' q  
for m3 = 1:1:M3                                    % Start space evolution (> v1)*r  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS >D';i\2j&  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; wec |~Rc-  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @Y#{[@Hp%  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform l6X\.oI  
   sca2 = fftshift(fft(s2)); Dl3Df u8  
   sca3 = fftshift(fft(s3)); | Wrf|%p  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   !V =s^8nj  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); az(u=}  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /CtR|~wL  
   s3 = ifft(fftshift(sc3)); D/CSR=b  
   s2 = ifft(fftshift(sc2));                       % Return to physical space r+BPz%wM=O  
   s1 = ifft(fftshift(sc1)); (aX5VB**  
end .[-d( #l{l  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &b 2Vt  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); aF:_1. LC  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 8"a[W3b  
   P1=[P1 p1/p10]; /=x) 9J  
   P2=[P2 p2/p10]; s!q6OVJ-  
   P3=[P3 p3/p10]; Ksq{=q-T  
   P=[P p*p]; xQ `>\f  
end zkdyfl5  
figure(1) :bLLN  
plot(P,P1, P,P2, P,P3); 6'e}!O  
@l0#C5(:  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计