| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 SSxp!E' ZLP/&`>8
% This Matlab script file solves the coupled nonlinear Schrodinger equations of PriLV4? % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of E5!vw@, % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 'i',M+0>jC % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C#-HWoSi Dj>eAO> %fid=fopen('e21.dat','w'); "}MP {/ N = 128; % Number of Fourier modes (Time domain sampling points) NOg/rDs'{ M1 =3000; % Total number of space steps kDol 1v` J =100; % Steps between output of space
&(oA/jFQ T =10; % length of time windows:T*T0 u@1 2:U$ T0=0.1; % input pulse width Idb*,l|< MN1=0; % initial value for the space output location Q3Pu<j}Y dt = T/N; % time step vJxEF&X n = [-N/2:1:N/2-1]'; % Index O}>@G t = n.*dt; >"8;8Ev u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 3~{I/ft u20=u10.*0.0; % input to waveguide 2 )$RV) u1=u10; u2=u20; ![;={d0 U1 = u1; !KMl'kswe: U2 = u2; % Compute initial condition; save it in U }f;WYz 5 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 58XZ]Mc0 w=2*pi*n./T; ^3[_4av g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T !m^;wkrY L=4; % length of evoluation to compare with S. Trillo's paper l]4=W<N dz=L/M1; % space step, make sure nonlinear<0.05 XwUa|"X6 for m1 = 1:1:M1 % Start space evolution ~P#mvQE) u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS &#L C' u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; U$mDAi$ ca1 = fftshift(fft(u1)); % Take Fourier transform )by7[I0v ca2 = fftshift(fft(u2)); H1f='k]SZ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation hs[x\:})/ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift aX`uF<c9 u2 = ifft(fftshift(c2)); % Return to physical space LD ]-IX&L u1 = ifft(fftshift(c1)); yI1:L
- if rem(m1,J) == 0 % Save output every J steps. 'y\Je7 U1 = [U1 u1]; % put solutions in U array {;DAKWm@T U2=[U2 u2]; Ie(i1?`A8 MN1=[MN1 m1]; ele@xl z1=dz*MN1'; % output location K(i}?9WD end o!:Z?.! end )w0x{_ hg=abs(U1').*abs(U1'); % for data write to excel "h#R>3I1) ha=[z1 hg]; % for data write to excel j1KNgAo<4 t1=[0 t']; kL%ot<rt)w hh=[t1' ha']; % for data write to excel file I<O$);DV' %dlmwrite('aa',hh,'\t'); % save data in the excel format ._^}M<o L figure(1) ?OLd
}8y waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn T/\RViG3 figure(2) n9xP8<w8
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn JD#x+~pb,8 iP0m1 非线性超快脉冲耦合的数值方法的Matlab程序 >*RU:X K_;vqi^1^& 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 HD^#" Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |]4!WBK H}$7c`;q nS04Ha
}3^m>i*8 % This Matlab script file solves the nonlinear Schrodinger equations pASX-rb % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 4T31<wk % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear r|EN 5 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3Do0?~n F%h3?"s C=1; Jqj!k*=/ M1=120, % integer for amplitude f^FFn32u M3=5000; % integer for length of coupler -NXxxK N = 512; % Number of Fourier modes (Time domain sampling points) #73pryXV dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 1Ng+mT T =40; % length of time:T*T0. c,4~zN8Ou dt = T/N; % time step Q,[G?vbj n = [-N/2:1:N/2-1]'; % Index u#,8bw?1 t = n.*dt; !?nbB2, ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. +4s]#{mP w=2*pi*n./T; =vbG'_[7 g1=-i*ww./2; V4+|D2 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; x~V[}4E%> g3=-i*ww./2; cD0rU8x P1=0; :j]1wp+ P2=0; 8@t8P5(vL P3=1; OP`f[lCiL P=0; j6GIB_ for m1=1:M1 )i~AXBt} p=0.032*m1; %input amplitude S"cTi[9 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 4rU/2}.q s1=s10; eX+36VG\ s20=0.*s10; %input in waveguide 2 e$J>z { s30=0.*s10; %input in waveguide 3 W:_-I4q~ s2=s20; e9o\qEm s3=s30; cLV*5?gVO p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); k7^hcth %energy in waveguide 1 qYC&0`:H p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); 7%y$^B7{ %energy in waveguide 2 zmo2uUEd p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); Ix- Mp
%energy in waveguide 3 'X;cgAq8( for m3 = 1:1:M3 % Start space evolution 4j={ 9e< s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS &DLWlMGq s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; G?s9c0f s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; $G".PWc sca1 = fftshift(fft(s1)); % Take Fourier transform { ADd[V sca2 = fftshift(fft(s2)); {DRk{>K, sca3 = fftshift(fft(s3)); gJQ#j~' sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift 6KMO*v sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); o-\h;aQJ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .9bi%=hP s3 = ifft(fftshift(sc3)); #EH=tJgO|J s2 = ifft(fftshift(sc2)); % Return to physical space YO$Ig:a# s1 = ifft(fftshift(sc1)); o{PG&
}K end Anz{u$0M[ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); [d`E9&Hv3 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); IL*B@E8 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); csy6_q( P1=[P1 p1/p10]; ]SQ+r*a P2=[P2 p2/p10]; K!6T8^JH P3=[P3 p3/p10]; B[N]=V P=[P p*p]; M~A#_%2U end q`9.@u@ a figure(1) _4by3?<c plot(P,P1, P,P2, P,P3); q3x"9i
` tu\XuDky 转自:http://blog.163.com/opto_wang/
|
|