首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 G88g@Exk  
y-vB C3  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of T28Q(\C:}  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of MT.D#jv&  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /Y*6mQ:  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 WSV% Oy3V  
2L?Pw   
%fid=fopen('e21.dat','w'); XNB4KjT  
N = 128;                       % Number of Fourier modes (Time domain sampling points) Ndqhc  
M1 =3000;              % Total number of space steps yv.(Oy  
J =100;                % Steps between output of space 4:qM'z  
T =10;                  % length of time windows:T*T0 c+]5[6  
T0=0.1;                 % input pulse width *7!*kq g!u  
MN1=0;                 % initial value for the space output location G+jcR; s  
dt = T/N;                      % time step o%?~9rf]]  
n = [-N/2:1:N/2-1]';           % Index )Jd{WC.  
t = n.*dt;   Ec|5'Kz]  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 __,}/|K2  
u20=u10.*0.0;                  % input to waveguide 2 1EA}[x  
u1=u10; u2=u20;                 R>`TV(W`9  
U1 = u1;   A*+KlhT  
U2 = u2;                       % Compute initial condition; save it in U SR&'38UCe  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. m*H6\on:  
w=2*pi*n./T; FLOSdMYdw  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1$rrfg  
L=4;                           % length of evoluation to compare with S. Trillo's paper )\0LxsZ  
dz=L/M1;                       % space step, make sure nonlinear<0.05 "(SZ;y  
for m1 = 1:1:M1                                    % Start space evolution ~JxAo\2i  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS rTLo6wI  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ~0XV[$`L  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform FR1se  
   ca2 = fftshift(fft(u2)); $eUJd Aetk  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation naWW i]9  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (= ,w$  
   u2 = ifft(fftshift(c2));                        % Return to physical space O=w u0n  
   u1 = ifft(fftshift(c1)); / ,#&Htk  
if rem(m1,J) == 0                                 % Save output every J steps. }e0)=*;l  
    U1 = [U1 u1];                                  % put solutions in U array A+1>n^^_<  
    U2=[U2 u2]; pbb6?R,  
    MN1=[MN1 m1]; A;#GU`  
    z1=dz*MN1';                                    % output location 5K %  
  end V/i7Zh#2:  
end Xw[|$#QKM  
hg=abs(U1').*abs(U1');                             % for data write to excel z9[BQ(9t  
ha=[z1 hg];                                        % for data write to excel !)TO2?,^  
t1=[0 t']; ]NgEN  
hh=[t1' ha'];                                      % for data write to excel file :6X?EbXhK  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format =f{YwtG  
figure(1) f8?c[%br  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (xhV>hsA  
figure(2) [ZkK)78}k  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn l:rT{l=8*  
q(cSHHv+  
非线性超快脉冲耦合的数值方法的Matlab程序 h$eVhN &Vv  
7BDoF!kCx  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   EkEU}2  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $f]dL};  
jFMf=u&U  
.ITR3]$  
&WGG kn  
%  This Matlab script file solves the nonlinear Schrodinger equations A('_.J=  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of a4iq_F#NF  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "vG~2J  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 KQ(7%W  
>X!A/; $  
C=1;                           -%#F5br%  
M1=120,                       % integer for amplitude T1Y_Jf*KJ  
M3=5000;                      % integer for length of coupler woCFkO;'O  
N = 512;                      % Number of Fourier modes (Time domain sampling points) H]/!J]  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. P1f@?R&t+  
T =40;                        % length of time:T*T0. ;iMgv5=  
dt = T/N;                     % time step $9Yk]~  
n = [-N/2:1:N/2-1]';          % Index (77EZ07%  
t = n.*dt;   ?yqTLj  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 4S+sz?W2j  
w=2*pi*n./T; J|A:C[7 2  
g1=-i*ww./2; YKT=0   
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @on\@~Ug  
g3=-i*ww./2; Ei[>%Ah  
P1=0; l /\n7:  
P2=0; 4]$$ar)  
P3=1; 6$|!_94>*)  
P=0; X}s}E ;v9  
for m1=1:M1                 j[Xc i<m  
p=0.032*m1;                %input amplitude & 0*=F%Fd  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 CnA0^JX  
s1=s10; {v>orP?  
s20=0.*s10;                %input in waveguide 2 wpLC,  
s30=0.*s10;                %input in waveguide 3 atA:v3"  
s2=s20; Q7-d]xJ^  
s3=s30; Z-D4~?Tv  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #I(Ho:b  
%energy in waveguide 1 aJi0!6oy  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   uqg#(ADy?R  
%energy in waveguide 2 oI6l`K$  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   }dt7n65  
%energy in waveguide 3 g,N"o72)  
for m3 = 1:1:M3                                    % Start space evolution }L1 -2  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS  #nS  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; X( H-U q*(  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ^Q'^9M2)  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform /?,c4K,ap  
   sca2 = fftshift(fft(s2)); hn bF}AD  
   sca3 = fftshift(fft(s3)); (3>Z NTm  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   5#SD$^  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {IlX@qWr  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); qd7 86~  
   s3 = ifft(fftshift(sc3)); s}pn5zMp:8  
   s2 = ifft(fftshift(sc2));                       % Return to physical space !VJ5(b  
   s1 = ifft(fftshift(sc1)); #6%9*Rh  
end PafsO,i-  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); wwtk6;8@  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @}{~Ofs  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); i!!1^DMrw  
   P1=[P1 p1/p10]; eaI!}#>R +  
   P2=[P2 p2/p10]; "$VqOSo  
   P3=[P3 p3/p10]; zu~E}  
   P=[P p*p]; KF#,Q  
end X~ AE??  
figure(1) &u_s*  
plot(P,P1, P,P2, P,P3); w/`I2uYu  
D6KYkN(,v  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计