首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 ~.!?5(AH8z  
d`<#}-nh  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 0sY#MHPT&  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #d$d&W~gE  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Mj,2\ijNM  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %PSz o8.l  
r)(i{:@r`  
%fid=fopen('e21.dat','w'); >DkN+S  
N = 128;                       % Number of Fourier modes (Time domain sampling points) Q=MCMe  
M1 =3000;              % Total number of space steps dcM+ylB  
J =100;                % Steps between output of space ByC1I.B`  
T =10;                  % length of time windows:T*T0 hE9'F(87a  
T0=0.1;                 % input pulse width ^glbxbhI4  
MN1=0;                 % initial value for the space output location }NR`81  
dt = T/N;                      % time step  |UABar b  
n = [-N/2:1:N/2-1]';           % Index rZb_1E<  
t = n.*dt;   v] W1F,u  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 d#RF0,Y9  
u20=u10.*0.0;                  % input to waveguide 2 5I wX\  
u1=u10; u2=u20;                 F9ZOSL 8Q  
U1 = u1;   #a/n5c&6/  
U2 = u2;                       % Compute initial condition; save it in U zS,%msT^A  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !#l0@3  
w=2*pi*n./T; %kaTQ"PB  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T tOu90gu  
L=4;                           % length of evoluation to compare with S. Trillo's paper M ^ 0w/  
dz=L/M1;                       % space step, make sure nonlinear<0.05 ^p'D<!6sK  
for m1 = 1:1:M1                                    % Start space evolution K[`4vsE  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS l;.[W|  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; pqRO[XEp2  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform uQXs>JuD  
   ca2 = fftshift(fft(u2)); q{jk.:;'  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation >Lo6='G  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   W ??;4  
   u2 = ifft(fftshift(c2));                        % Return to physical space k4]R]=Fh.  
   u1 = ifft(fftshift(c1)); ksxO<Y  
if rem(m1,J) == 0                                 % Save output every J steps. w}]3jc84  
    U1 = [U1 u1];                                  % put solutions in U array weTK#O0@v  
    U2=[U2 u2]; a @yE:HU  
    MN1=[MN1 m1]; hqwz~Ky}  
    z1=dz*MN1';                                    % output location @$K![]oD  
  end Oi+Qy[y2  
end WW,r9D:/  
hg=abs(U1').*abs(U1');                             % for data write to excel 2_B;  
ha=[z1 hg];                                        % for data write to excel b tr x?k(  
t1=[0 t']; bw<~R2[  
hh=[t1' ha'];                                      % for data write to excel file ]JhDRJ\  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format <S:,`v&Z  
figure(1) D0,oml  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 64IeCAMVo  
figure(2) #! K~_DL  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn :BC<+T=  
/cn/[O9  
非线性超快脉冲耦合的数值方法的Matlab程序 -wG[>Y  
Ply2DQr  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Yg]FF`{p=  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }lr fO_  
*$*nY [/5  
Wr}a\}R  
:IOn`mRYu  
%  This Matlab script file solves the nonlinear Schrodinger equations @$N*lrM2  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of */fs.G:P  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ).O\O)K  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;]8p:ME  
?U2g8D nFY  
C=1;                           2t Z\{=  
M1=120,                       % integer for amplitude  9\W5   
M3=5000;                      % integer for length of coupler &].1[&M]  
N = 512;                      % Number of Fourier modes (Time domain sampling points) 0B!mEg  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. t9=|* =;9)  
T =40;                        % length of time:T*T0. cl9;2D"Zm!  
dt = T/N;                     % time step BLYk <m  
n = [-N/2:1:N/2-1]';          % Index O!@KM;  
t = n.*dt;   #L)4 |  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. E<fwl1<88  
w=2*pi*n./T; &_Xv:?  
g1=-i*ww./2; IhFw{=2*  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; - KoA[UJ  
g3=-i*ww./2; G~mB=]  
P1=0; u9y-zhj_$  
P2=0; dwsy(g7  
P3=1; +{l3#Y  
P=0; |Jx2"0:M  
for m1=1:M1                 [^"(%{H  
p=0.032*m1;                %input amplitude HS|g   
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 (B?xq1Q  
s1=s10; Fr Q-v]c  
s20=0.*s10;                %input in waveguide 2 e]L3=R;  
s30=0.*s10;                %input in waveguide 3 pC?1gc1G  
s2=s20; p|O-I&Xd  
s3=s30; CI3_lWax%  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   2 3XAkpzp$  
%energy in waveguide 1 4s+J-l  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   My43\p  
%energy in waveguide 2 2%No>w}/2  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   n4 6PQm%p  
%energy in waveguide 3 iLQt9Hyk  
for m3 = 1:1:M3                                    % Start space evolution H2t pP~!G  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ]t!}D6p  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %RR|QY*  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; aDJjVD  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform aN);P>  
   sca2 = fftshift(fft(s2)); d)J] Y=j  
   sca3 = fftshift(fft(s3)); #I@[^^Vw  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   onypwfIk)t  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); B0?@k  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); _ZE$\5>-  
   s3 = ifft(fftshift(sc3)); $hY]EB  
   s2 = ifft(fftshift(sc2));                       % Return to physical space -*{(#k$  
   s1 = ifft(fftshift(sc1)); CIs1*:Q9  
end SoON@h/  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); n<(5B|~y  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); LW8{a&  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); DD{@lM\vc  
   P1=[P1 p1/p10]; 1:l&&/Wy  
   P2=[P2 p2/p10]; di P4]/%1  
   P3=[P3 p3/p10]; /iJhCB[QZ  
   P=[P p*p]; K &~#@I;  
end 4lo}-@j  
figure(1) q,h.W JI  
plot(P,P1, P,P2, P,P3); L08;z  
oDiv9 jm  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计