首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 W6&" .2  
?ZdHuuDN~  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of e x $d~  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of NeCTEe|V  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear RK/SeS  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gTW(2?xYf  
g-oHu8   
%fid=fopen('e21.dat','w'); eN>=x40  
N = 128;                       % Number of Fourier modes (Time domain sampling points) #1z}~1-  
M1 =3000;              % Total number of space steps '68{dyFZL  
J =100;                % Steps between output of space rv;w`f  
T =10;                  % length of time windows:T*T0 7\JRHw  
T0=0.1;                 % input pulse width >T.U\,om7  
MN1=0;                 % initial value for the space output location Il'+^u_ <  
dt = T/N;                      % time step p4<&NMG  
n = [-N/2:1:N/2-1]';           % Index [@#P3g\:>W  
t = n.*dt;   r&0v,WSp&S  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $Xk1'AzB8  
u20=u10.*0.0;                  % input to waveguide 2 wi:]oo#  
u1=u10; u2=u20;                 -[`,MZf   
U1 = u1;   j?/T7a^  
U2 = u2;                       % Compute initial condition; save it in U Rla1,{1  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :uZcN  
w=2*pi*n./T; SR%h=`t  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T -78 t0-lM  
L=4;                           % length of evoluation to compare with S. Trillo's paper O9=vz%  
dz=L/M1;                       % space step, make sure nonlinear<0.05 oO$a4|&,  
for m1 = 1:1:M1                                    % Start space evolution *7nlel  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +_06{7@h  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; *<x EM-  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform U|u v SJ)X  
   ca2 = fftshift(fft(u2)); /0!6;PC<  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation _tb)F"4V  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   A"I:cw"KY  
   u2 = ifft(fftshift(c2));                        % Return to physical space `WC~cb\  
   u1 = ifft(fftshift(c1)); 0#G&8*FMN  
if rem(m1,J) == 0                                 % Save output every J steps. q,^^c1f  
    U1 = [U1 u1];                                  % put solutions in U array ;,JCA# N  
    U2=[U2 u2]; 477jS6^e&  
    MN1=[MN1 m1]; I Vq9z  
    z1=dz*MN1';                                    % output location N02N w(pi  
  end dW,$yH_  
end t{Q9Kv  
hg=abs(U1').*abs(U1');                             % for data write to excel ;?yd;GOt)  
ha=[z1 hg];                                        % for data write to excel )<1M'2  
t1=[0 t']; 72&xEx  
hh=[t1' ha'];                                      % for data write to excel file 9@Cqg5Kx'  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format IM}#k$vM:  
figure(1) . ?[2,4F;  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1 ;4TA}'H  
figure(2) oslrv7EK  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn W _yVVr  
]EE}ax%#aq  
非线性超快脉冲耦合的数值方法的Matlab程序 ts{Tk5+  
^WVH z;  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   xx#; )]WT  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w~;1R\?|  
!HY+6!hk  
Qi w "x,  
o D*h@yL  
%  This Matlab script file solves the nonlinear Schrodinger equations FlrLXTx0  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of {O]Cj~}  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]gQgNn?  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 rts@1JY[  
ORA +>  
C=1;                           [q?{e1  
M1=120,                       % integer for amplitude +'N?`l6<  
M3=5000;                      % integer for length of coupler =sG  C  
N = 512;                      % Number of Fourier modes (Time domain sampling points) /V2Ih  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. k,0JW=Vh>|  
T =40;                        % length of time:T*T0. hof:36 <  
dt = T/N;                     % time step ES(b#BlrP/  
n = [-N/2:1:N/2-1]';          % Index rMH\;\ I|U  
t = n.*dt;   3*/y<Z'H  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $eCxpb..  
w=2*pi*n./T; u1~H1 ]Ii  
g1=-i*ww./2; <omSK- T-  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; f*0[[J0]  
g3=-i*ww./2; 38 tRb"3zP  
P1=0; bsmZR(EnU  
P2=0; G9 ;X=c  
P3=1; E"b+Q  
P=0; pyq~_ Bng  
for m1=1:M1                 "S,,BjL  
p=0.032*m1;                %input amplitude ol^OvG:TQ  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^{DXin 1O`  
s1=s10; quTM|>=_R  
s20=0.*s10;                %input in waveguide 2 N41)?-7F  
s30=0.*s10;                %input in waveguide 3 lSPQXu*[  
s2=s20; ?R(fxx  
s3=s30; %u, H2 *  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   [O2xE037h`  
%energy in waveguide 1 fk<0~ tE  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5*/~) wN\U  
%energy in waveguide 2 $>hPB[[  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   u<!8dQ8  
%energy in waveguide 3 wI'T J e,  
for m3 = 1:1:M3                                    % Start space evolution _rdEur C6  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ?xWO>#/  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Tv_KdOv8  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; hbl:~O&a/  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform F/tGk9v  
   sca2 = fftshift(fft(s2)); 5V':3o;D__  
   sca3 = fftshift(fft(s3)); C*a>B,H  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   tda#9i[pkH  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); z\]]d?d?;  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); bJ4})P&  
   s3 = ifft(fftshift(sc3)); l ~b# Y&  
   s2 = ifft(fftshift(sc2));                       % Return to physical space  SP?~i@H  
   s1 = ifft(fftshift(sc1)); vO`~rUA  
end F{WV}o=MY  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); pZ,=iqr  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); M+j V`J!  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 6!sC  
   P1=[P1 p1/p10]; sG7G$G*ta!  
   P2=[P2 p2/p10]; 4W5[1GE.  
   P3=[P3 p3/p10]; 3k(A&]~v  
   P=[P p*p]; s1.EE|h,5  
end  ?12[8   
figure(1) J~Uq'1?  
plot(P,P1, P,P2, P,P3); /'' |bIPa  
-+?ZJ^A   
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计