| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 \k;`}3uO tQZs.1=z % This Matlab script file solves the coupled nonlinear Schrodinger equations of 3iw{SEY % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Q-ni| % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G+B~Ix- % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;^*Unyt[4] ,yd
MU\so( %fid=fopen('e21.dat','w'); j4?@(u9;j N = 128; % Number of Fourier modes (Time domain sampling points) u` oq(?| M1 =3000; % Total number of space steps +k
dT(7 J =100; % Steps between output of space NCxqh < T =10; % length of time windows:T*T0 `_b`kzJ T0=0.1; % input pulse width iX0iRC6f MN1=0; % initial value for the space output location qB)"qFa
dt = T/N; % time step d,8mY/S>w n = [-N/2:1:N/2-1]'; % Index c/B'jPt t = n.*dt; jp $Z] u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 \Mg`(,kwe u20=u10.*0.0; % input to waveguide 2 qwIa?!8o u1=u10; u2=u20; gp$Ucfu' U1 = u1; u:aW 8 U2 = u2; % Compute initial condition; save it in U )tCX
y4 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. PW3GL3+ w=2*pi*n./T; dw.F5?j`b g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >A0k 8T L=4; % length of evoluation to compare with S. Trillo's paper JG9` h# dz=L/M1; % space step, make sure nonlinear<0.05 mv5n4mav for m1 = 1:1:M1 % Start space evolution M xyN\Mq' u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS K}6dg< u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \rVQQ|l ca1 = fftshift(fft(u1)); % Take Fourier transform DGevE~ ca2 = fftshift(fft(u2)); J9K3s_SN c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation AfG/JWSo} c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 1 sPdz
L u2 = ifft(fftshift(c2)); % Return to physical space Bi@&nAhn@ u1 = ifft(fftshift(c1)); 4t)%<4 if rem(m1,J) == 0 % Save output every J steps.
aR,}W\6M U1 = [U1 u1]; % put solutions in U array XUuu-wm:} U2=[U2 u2]; ""s]zNF} MN1=[MN1 m1]; 7\ nf:. z1=dz*MN1'; % output location $lhC{&tBV end W>q HFoKa end +za8=`2o hg=abs(U1').*abs(U1'); % for data write to excel N)&4Hy ha=[z1 hg]; % for data write to excel 0\2\*I}? t1=[0 t']; : Sq?a0!S hh=[t1' ha']; % for data write to excel file gKOOHUCb %dlmwrite('aa',hh,'\t'); % save data in the excel format U%h);!< figure(1) Z3!f^vAi& waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn O5H9Y}i] figure(2) N{-]F|XX waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn z&V+#Ws/ PvGDTYcKp 非线性超快脉冲耦合的数值方法的Matlab程序 %F kMv L28*1]\Jh 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 t%530EB3 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "_2Ng<2 lY*[tmz) mrV!teP #z1H8CFL" % This Matlab script file solves the nonlinear Schrodinger equations sBV4)xM % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >a3p >2 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8p-=&cuo\@ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 au,t%8AC Jk0r&t7 C=1; g@\fZTO M1=120, % integer for amplitude sl2@umR7%( M3=5000; % integer for length of coupler ZylJp8U N = 512; % Number of Fourier modes (Time domain sampling points) V^Hu3aUx8
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. S~]mWxgZ T =40; % length of time:T*T0. 7bDHXn dt = T/N; % time step 'Wa,OFd\8 n = [-N/2:1:N/2-1]'; % Index ^[15&T5 t = n.*dt; nNXgW ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. mqq;H} w=2*pi*n./T; h5yzwj:C? g1=-i*ww./2; /*|oL#hK g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Kt0(gQOr0 g3=-i*ww./2; ]jpu,jz: P1=0; wp7!>%s{ P2=0; N?X~ w < P3=1; t#!yrQ..'G P=0; _{jjgQJ5 for m1=1:M1 0| ;
.6\ p=0.032*m1; %input amplitude 3OM2Y_ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 l|5fE1K9U s1=s10; (@WA1oNG s20=0.*s10; %input in waveguide 2 Q]o C47( s30=0.*s10; %input in waveguide 3 XR!us/U`a s2=s20; ZIdA\_c s3=s30; !;_H$r0 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); cwV]!=RtO %energy in waveguide 1 BPr^D0P p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); c)0amM %energy in waveguide 2 3Tq\BZ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); P9T5L<5 %energy in waveguide 3 S>.F_Jl for m3 = 1:1:M3 % Start space evolution )#F]G$51r s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS lD{Aa!\ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; B^%1Rpcn s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; -R>}u'EG> sca1 = fftshift(fft(s1)); % Take Fourier transform `>o?CIdp sca2 = fftshift(fft(s2)); ,YhdY6 sca3 = fftshift(fft(s3)); t tXjn sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift 7Ol}EPf# sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); n[YEOkiG sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Tlj:%yK2 s3 = ifft(fftshift(sc3)); NzKUtwnIz s2 = ifft(fftshift(sc2)); % Return to physical space X0*QV- RN s1 = ifft(fftshift(sc1)); wM_c48|d end 34!dYr% p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); e|4&b@ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); OiDhJ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1N2,mo?2 P1=[P1 p1/p10]; 4d:{HLX, P2=[P2 p2/p10]; ! Q<>3xZ P3=[P3 p3/p10]; ASPy P=[P p*p]; 5PcJZi^.l end q.2(OP>( figure(1) ~XeFOMq plot(P,P1, P,P2, P,P3); -*2Mf Mh i@NqC;~; 转自:http://blog.163.com/opto_wang/
|
|