首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 oC7#6W:@w  
}?fa+FQGp  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 8dA/dMQ  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of @tj0Ir v  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]#:xl}'LS  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _-!6@^+  
FBY~Z$o0.  
%fid=fopen('e21.dat','w'); GzB%vsv9 5  
N = 128;                       % Number of Fourier modes (Time domain sampling points) 6op\g].P  
M1 =3000;              % Total number of space steps YD+C1*c!  
J =100;                % Steps between output of space -+PPz?0  
T =10;                  % length of time windows:T*T0 ,@!d%rL:4]  
T0=0.1;                 % input pulse width P)\f\yb  
MN1=0;                 % initial value for the space output location ^|K*lI/  
dt = T/N;                      % time step ffB]4  
n = [-N/2:1:N/2-1]';           % Index n9J>yud|  
t = n.*dt;   _:K}DU'6  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 (w^&NU'e  
u20=u10.*0.0;                  % input to waveguide 2 g8x8u|  
u1=u10; u2=u20;                 _$cBI_eA7  
U1 = u1;   _ x'StD  
U2 = u2;                       % Compute initial condition; save it in U 8/F2V?iT  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 2 sOc]L:9  
w=2*pi*n./T; ^7''x,I  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T (i?^g &  
L=4;                           % length of evoluation to compare with S. Trillo's paper uB^]5sqfk  
dz=L/M1;                       % space step, make sure nonlinear<0.05 K5ph x  
for m1 = 1:1:M1                                    % Start space evolution N-Z 9  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Grub1=6l  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; vOj$-A--qU  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform tQ|I$5jNJ  
   ca2 = fftshift(fft(u2)); 5;Z~+$1  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation *&PgDAQ  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Sh*P^i.]+  
   u2 = ifft(fftshift(c2));                        % Return to physical space <|_Ey)1 6  
   u1 = ifft(fftshift(c1)); A^Zs?<C-  
if rem(m1,J) == 0                                 % Save output every J steps. \mDm *UuG  
    U1 = [U1 u1];                                  % put solutions in U array  {Eb6.  
    U2=[U2 u2]; ie ,{C  
    MN1=[MN1 m1]; ;'Q{ ywr  
    z1=dz*MN1';                                    % output location GkC88l9z  
  end =@z"k'Vl`  
end C;ye%&g>  
hg=abs(U1').*abs(U1');                             % for data write to excel xV6j6k  
ha=[z1 hg];                                        % for data write to excel ={Hbx> p  
t1=[0 t']; Mzd}9x$'J  
hh=[t1' ha'];                                      % for data write to excel file *,pqpD>  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format t(yv   
figure(1) [~o3S$C&7  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn xle29:?l  
figure(2) ?`XKaD! f  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Cnr48ukq  
~;W%s  
非线性超快脉冲耦合的数值方法的Matlab程序 5e LPn  
~h/U ;Da  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   pi{ahuI#_o  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3IkG*enI  
LQjqwsuN{  
2P=;r:cx  
;1 fML,8  
%  This Matlab script file solves the nonlinear Schrodinger equations 'yNp J'  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of pDLo`F}A  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (`p(c;"*C!  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0d2%CsMS"D  
}VGiT~2$  
C=1;                           ]VME`]t`  
M1=120,                       % integer for amplitude m+=!Z|K  
M3=5000;                      % integer for length of coupler D4|_?O3 |m  
N = 512;                      % Number of Fourier modes (Time domain sampling points) qrkT7f  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. i&$uG[&P  
T =40;                        % length of time:T*T0. 8f.La  
dt = T/N;                     % time step P33E\O  
n = [-N/2:1:N/2-1]';          % Index vn<S"  
t = n.*dt;   C0%%@ 2+  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. UPYM~c+}  
w=2*pi*n./T; hA8 zXk/'8  
g1=-i*ww./2; X`b5h}c  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -ZB"Yg$l  
g3=-i*ww./2; d#\n)eGr  
P1=0; >`:+d'Jv0  
P2=0; v`&Z.9!Tz^  
P3=1; FScQS.qF  
P=0; +0 MKh  
for m1=1:M1                 m C Ge*V}  
p=0.032*m1;                %input amplitude Y"qY@`  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 UVK"%kW#(  
s1=s10; g&>Hy!v,  
s20=0.*s10;                %input in waveguide 2 {/<&  
s30=0.*s10;                %input in waveguide 3 J%)2,szn0  
s2=s20; !UTJ) &  
s3=s30; U\ued=H  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   zTLn*?  
%energy in waveguide 1 eW0=m:6  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   meR2"JN'  
%energy in waveguide 2 _LNPB$P  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   N6;Z\\&0^q  
%energy in waveguide 3 0,/x#  
for m3 = 1:1:M3                                    % Start space evolution .a*$WGb  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS +QX>:z  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; TpgBS4q  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ydQS"]\g  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform OX4D'  
   sca2 = fftshift(fft(s2)); F]YKYF'1I  
   sca3 = fftshift(fft(s3)); Q\L5ZJ%y/  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   SK52.xXJ  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); fP58$pwu  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !\1W*6U8;  
   s3 = ifft(fftshift(sc3)); d&`j 8O  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ;L2bC3  
   s1 = ifft(fftshift(sc1)); tHbPd.^  
end )\vHIXnfJ1  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); or}*tSKX  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); L?x?+HPY.  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 31& .Lnq  
   P1=[P1 p1/p10]; j_@3a)[NY  
   P2=[P2 p2/p10]; #~;8#!X  
   P3=[P3 p3/p10]; x-&v|w'  
   P=[P p*p]; Jr)`shJ"  
end t [hocl/6  
figure(1) Aw;vg/#~md  
plot(P,P1, P,P2, P,P3); `aL|qyrq#  
|+-i'N9  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计