首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 8ZtJvk`  
\&F4Wl>`  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of 8F[ ];LF>  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]!ai?z%cK#  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4Sh8w%s  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4)iP%%JH  
Kw-<o!~  
%fid=fopen('e21.dat','w'); #$UwJB]_D  
N = 128;                       % Number of Fourier modes (Time domain sampling points) wR_mJMk_  
M1 =3000;              % Total number of space steps ,7V?K j  
J =100;                % Steps between output of space {IOc'W-C#2  
T =10;                  % length of time windows:T*T0 B EwaQvQ!  
T0=0.1;                 % input pulse width !Q\*a-C  
MN1=0;                 % initial value for the space output location @ lB{!j&q  
dt = T/N;                      % time step 5WI bnV@  
n = [-N/2:1:N/2-1]';           % Index +2MF#{ tS  
t = n.*dt;   \PS]c9@,rc  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 q{h,}[U=  
u20=u10.*0.0;                  % input to waveguide 2 3$"V,_TBZ  
u1=u10; u2=u20;                 #`y[75<n  
U1 = u1;   n[>hJ6  
U2 = u2;                       % Compute initial condition; save it in U du$lS':`  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. h1S)B|~8  
w=2*pi*n./T; [pU(z'caS  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T FWu:5fBZY  
L=4;                           % length of evoluation to compare with S. Trillo's paper ;?u cC@  
dz=L/M1;                       % space step, make sure nonlinear<0.05 y],op G6  
for m1 = 1:1:M1                                    % Start space evolution 6wpW!SWD  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS |ru!C(  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; d5-Q}D,P  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 3>n&u,Xe  
   ca2 = fftshift(fft(u2)); )VQ[}iT  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "d<uc j  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift    +C\79,r  
   u2 = ifft(fftshift(c2));                        % Return to physical space oI#TjF  
   u1 = ifft(fftshift(c1)); A@o7  
if rem(m1,J) == 0                                 % Save output every J steps. 4Pr^>m  
    U1 = [U1 u1];                                  % put solutions in U array g@ J F  
    U2=[U2 u2]; ~ AD>@;8fG  
    MN1=[MN1 m1]; oL9<Fi  
    z1=dz*MN1';                                    % output location A< .5=E,/  
  end G9Xkim Q'  
end TeuZVy8a  
hg=abs(U1').*abs(U1');                             % for data write to excel Ch{6=k bK  
ha=[z1 hg];                                        % for data write to excel ], Bafz)4  
t1=[0 t']; ,m*HRUY  
hh=[t1' ha'];                                      % for data write to excel file gZ&4b'XS,  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format &'`C#-e@  
figure(1) Sm[#L`eqW  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn { 1~]}K2  
figure(2) {;Hg1=cm  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn G\tN(%.f  
a;dWM(;Kw  
非线性超快脉冲耦合的数值方法的Matlab程序 .WSn Y71  
kYCm5g3u  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (~Bm\Jn  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 lZ5-lf4  
L+ew/I>:  
j&dCP@G  
,Gy,bcv{  
%  This Matlab script file solves the nonlinear Schrodinger equations N @_y<7#C  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of w}6~t\9D  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <V U-ja*(J  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q=e;P;u  
?#c "wA&  
C=1;                           POm;lM$  
M1=120,                       % integer for amplitude BO}IN#  
M3=5000;                      % integer for length of coupler wx-&(f   
N = 512;                      % Number of Fourier modes (Time domain sampling points) CD`6R.  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. /Gnt.%y&  
T =40;                        % length of time:T*T0. )+v5 H  
dt = T/N;                     % time step 8~qpOQX^V  
n = [-N/2:1:N/2-1]';          % Index f4\F:YT  
t = n.*dt;   2@T0QJ  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. >=rniHs=?7  
w=2*pi*n./T; m.6uLaD"!}  
g1=-i*ww./2; (=rDt93J  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; wqm{f~nj=  
g3=-i*ww./2; o9ys$vXt*  
P1=0; zxs)o}8icO  
P2=0; Te!eM{_$T  
P3=1; StR)O))I  
P=0; *kf%?T.  
for m1=1:M1                 LDw.2E  
p=0.032*m1;                %input amplitude PRYm1Y  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 P\[K)N/1  
s1=s10; G@e;ms1  
s20=0.*s10;                %input in waveguide 2 aA*h*  
s30=0.*s10;                %input in waveguide 3 [GM!@6U  
s2=s20; >yenuqIKQv  
s3=s30; f7 ew<c\  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   F*z>B >{)  
%energy in waveguide 1 X`Lv}6}xT  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   MC-Z6l2  
%energy in waveguide 2 ,: z]15fX  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "AqLR  
%energy in waveguide 3 u<n['Ur}|  
for m3 = 1:1:M3                                    % Start space evolution R/B/|x  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS &9Z@P[f  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~6u|@pnI  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; }>f%8O}  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform x`p908S^  
   sca2 = fftshift(fft(s2)); T z:,l$  
   sca3 = fftshift(fft(s3)); pi;fu  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   }!*|VdL0  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Vl(id_~_  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); S"+#=C  
   s3 = ifft(fftshift(sc3)); '&|%^9O/"  
   s2 = ifft(fftshift(sc2));                       % Return to physical space ~s?y[yy6i  
   s1 = ifft(fftshift(sc1)); L`:V]p  
end o{2B^@+Vb  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #RdcSrw)W!  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); HWL? doM  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); K^/.v<w  
   P1=[P1 p1/p10]; 2c,w 4rK  
   P2=[P2 p2/p10]; P$O@G$n  
   P3=[P3 p3/p10]; MD 0d  
   P=[P p*p]; bLg gh]Fh  
end e v7A;;  
figure(1) iF:NDqc  
plot(P,P1, P,P2, P,P3); E9.1~ )  
PJKxh%J  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计