首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 |t*(]U2O0  
zF6 R\w  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of :@)UI,  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of k@U8K(:x  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Mg;%];2Nt  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 sHD8#t^{  
W)3?T& `  
%fid=fopen('e21.dat','w'); !!Z#'Wq  
N = 128;                       % Number of Fourier modes (Time domain sampling points) }# 'wy  
M1 =3000;              % Total number of space steps )orVI5ti  
J =100;                % Steps between output of space |m7U^  
T =10;                  % length of time windows:T*T0 ~K}iVX  
T0=0.1;                 % input pulse width OQMkpX-dH  
MN1=0;                 % initial value for the space output location Y-\hV6v6  
dt = T/N;                      % time step C( 8i0(1  
n = [-N/2:1:N/2-1]';           % Index exw~SvT3  
t = n.*dt;   [G2@[Ct Y1  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1oD,E!+^d  
u20=u10.*0.0;                  % input to waveguide 2 nmZz`P9g  
u1=u10; u2=u20;                 s.I%[kada  
U1 = u1;   ntbl0Sk  
U2 = u2;                       % Compute initial condition; save it in U xF: O6KL  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. V(_OyxeC{2  
w=2*pi*n./T; |D+"+w/  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T z<aBGG  
L=4;                           % length of evoluation to compare with S. Trillo's paper $Llv6<B  
dz=L/M1;                       % space step, make sure nonlinear<0.05 Qd;P?W6  
for m1 = 1:1:M1                                    % Start space evolution >p#`%S  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "s!!\/^9C  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 1O@ qpNm  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform 4k/B=%l  
   ca2 = fftshift(fft(u2)); n% zW6}  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation nVkx Q?2  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   0JzH dz  
   u2 = ifft(fftshift(c2));                        % Return to physical space %@ UH,Ew  
   u1 = ifft(fftshift(c1)); |U{9Yy6p  
if rem(m1,J) == 0                                 % Save output every J steps. li'h&!|]  
    U1 = [U1 u1];                                  % put solutions in U array A>WMPe:sSS  
    U2=[U2 u2]; 4?Pdld  
    MN1=[MN1 m1]; [8|Y2Z\N  
    z1=dz*MN1';                                    % output location r09gB#K4  
  end %@tKcQ  
end 'i5 VU4?K  
hg=abs(U1').*abs(U1');                             % for data write to excel {hQ0=rv<  
ha=[z1 hg];                                        % for data write to excel j6v|D>I  
t1=[0 t']; K"u-nroHW  
hh=[t1' ha'];                                      % for data write to excel file !v/5 G_pr  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format 8G$ %DZ $  
figure(1) X[/>{rK  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn d: D`rpcC  
figure(2) 3FRz&FS:j  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "fK`F/  
Xi$( U8J_  
非线性超快脉冲耦合的数值方法的Matlab程序 MMlryn||1  
V]I@&*O~ r  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   s~e<Pr?yu  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $A~UA  
8B#;ffkmN  
a&:1W83  
Gk_%WY*  
%  This Matlab script file solves the nonlinear Schrodinger equations J{>9ctN  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of <Sds5 d  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear MKVz'-`u  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x/~qyX8vo  
g4b-~1[S  
C=1;                           ^(z7?T  
M1=120,                       % integer for amplitude 1Q_  C  
M3=5000;                      % integer for length of coupler EWOS6Yg7  
N = 512;                      % Number of Fourier modes (Time domain sampling points) >,c$e' h  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. eu=G[>  
T =40;                        % length of time:T*T0. ZEY="pf  
dt = T/N;                     % time step -& Qm"-?:  
n = [-N/2:1:N/2-1]';          % Index WgHl. :R  
t = n.*dt;   HIiMq'H^  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. + *u'vt?  
w=2*pi*n./T; {g8uMt\4  
g1=-i*ww./2; 0IZaf%zYc  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ;+v5li  
g3=-i*ww./2; Pdgn9  
P1=0; bVfFhfh*  
P2=0; V11(EZJ/j  
P3=1; vW6 a=j8  
P=0; ]U[y3  
for m1=1:M1                 Xjb 4dip  
p=0.032*m1;                %input amplitude Xae0xs  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 b"D? @dGB,  
s1=s10; JFAmND;+  
s20=0.*s10;                %input in waveguide 2 w+A:]SU  
s30=0.*s10;                %input in waveguide 3 pypW  
s2=s20; /#mq*kNIM6  
s3=s30; B$A`thQp  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   H~Z$pk%  
%energy in waveguide 1 :~uvxiF  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   j^4KczJl  
%energy in waveguide 2 F; upb5  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   )"( ojh  
%energy in waveguide 3 '8%pEl^  
for m3 = 1:1:M3                                    % Start space evolution ku2g FO  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS oJ\)-qSf  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; TcB^Sctf  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; $qz(9M(m#  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform b5!\"v4c  
   sca2 = fftshift(fft(s2)); T,' {0q  
   sca3 = fftshift(fft(s3)); c}XuzgSY  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   FEOr'H<3x  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); P:~X az\F  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); }s*H| z  
   s3 = ifft(fftshift(sc3)); w$5~'Cbi  
   s2 = ifft(fftshift(sc2));                       % Return to physical space hbZ]DRg  
   s1 = ifft(fftshift(sc1)); ^pI&f{q  
end  ywQ>T+  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 4}i2j  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); x" N{5  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); "zN2+X"&  
   P1=[P1 p1/p10]; _:R Q9x'  
   P2=[P2 p2/p10]; ^{ Kj{M22  
   P3=[P3 p3/p10]; Vgh;w-a  
   P=[P p*p]; OO7sj@  
end V)pn)no'V  
figure(1) N 3M:|D  
plot(P,P1, P,P2, P,P3); Cx N]fo  
|)%]MK$;  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计