首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 U||w6:W5  
I!soV0V U]  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of N.Wdi  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of vS24;:f  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6iV"Tl{z-  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?( dYW7S  
TJ%]{%F  
%fid=fopen('e21.dat','w'); C&CsI] @g  
N = 128;                       % Number of Fourier modes (Time domain sampling points) $ <>EwW  
M1 =3000;              % Total number of space steps aJa^~*N/Aa  
J =100;                % Steps between output of space &xiDG=I#  
T =10;                  % length of time windows:T*T0 4 HJZ^bq9|  
T0=0.1;                 % input pulse width #.<F5  
MN1=0;                 % initial value for the space output location r PRuSk-f  
dt = T/N;                      % time step !>Qc2&ZV  
n = [-N/2:1:N/2-1]';           % Index 5qtmb4R~  
t = n.*dt;   @7[.> I(  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ek;&<Z_ ]  
u20=u10.*0.0;                  % input to waveguide 2 ah!O&ECh  
u1=u10; u2=u20;                 *|gs-<[#X  
U1 = u1;   ,Q /nS$  
U2 = u2;                       % Compute initial condition; save it in U / Vm}+"BCS  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &8_#hne_  
w=2*pi*n./T; k vgs $  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T l SVW}t  
L=4;                           % length of evoluation to compare with S. Trillo's paper S'-`\%@7  
dz=L/M1;                       % space step, make sure nonlinear<0.05 uZiY<(X  
for m1 = 1:1:M1                                    % Start space evolution F#}1{$)% /  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS eEri v@v  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; eDM0417O(  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform *_).UAP.  
   ca2 = fftshift(fft(u2)); E][{RTs  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation vo( j@+dz  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   moJT8tb  
   u2 = ifft(fftshift(c2));                        % Return to physical space }MavI'  
   u1 = ifft(fftshift(c1)); ^tKOxW# a  
if rem(m1,J) == 0                                 % Save output every J steps. /4B4IT  
    U1 = [U1 u1];                                  % put solutions in U array MkNURy>n&  
    U2=[U2 u2]; HT,kx  
    MN1=[MN1 m1]; {EoyMJgz  
    z1=dz*MN1';                                    % output location kW2nrkF  
  end W6xjqNU  
end EAd:`X,Y  
hg=abs(U1').*abs(U1');                             % for data write to excel >pH775I=  
ha=[z1 hg];                                        % for data write to excel ,8"[ /@  
t1=[0 t']; 2eR+dT  
hh=[t1' ha'];                                      % for data write to excel file _hyxKrm' 6  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format , w'$T)  
figure(1) &pY G   
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn SX=0f^  
figure(2) k-ex<el)#  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn On.x~ t  
4bFVyv  
非线性超快脉冲耦合的数值方法的Matlab程序 :%b2;&A[  
V&+$V q  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Oc/_ T>  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C94UF7al  
eZod}~J8  
^.1VhTB  
FeeWZe0i  
%  This Matlab script file solves the nonlinear Schrodinger equations v{{2<,l  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of "`3 ^M vC  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^'I5]cRa  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |m 5;M$M)  
)(!Z90@  
C=1;                           .f<VmUca  
M1=120,                       % integer for amplitude .yfqS|(  
M3=5000;                      % integer for length of coupler )>M@hIV5>  
N = 512;                      % Number of Fourier modes (Time domain sampling points) #Xw[i  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. L%O8vn^3  
T =40;                        % length of time:T*T0. (:Hbtr I  
dt = T/N;                     % time step Cz);mOb%M%  
n = [-N/2:1:N/2-1]';          % Index 9"lW"lG!  
t = n.*dt;   ;ld~21#m  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. {ZM2WFpE  
w=2*pi*n./T; No&[ \;  
g1=-i*ww./2; >Wit"p  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; F4<2.V)#-  
g3=-i*ww./2; wYMX1=  
P1=0; 6`";)T[G9  
P2=0; /^eemx  
P3=1; G{Enh<V  
P=0; 9c % Tv  
for m1=1:M1                 ^?]H$e  
p=0.032*m1;                %input amplitude 3R:i*8C  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 {5IG3'  
s1=s10; J9=0?^v-:B  
s20=0.*s10;                %input in waveguide 2 @OY-(cW  
s30=0.*s10;                %input in waveguide 3 BI^]juH-c  
s2=s20; 5"~^;O  
s3=s30; )$4DH:WN  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   5t#]lg[06'  
%energy in waveguide 1 b-zX3R;  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   jh&vq=P H  
%energy in waveguide 2 'I>#0VRr  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   4bzn^  
%energy in waveguide 3 D=sc41]  
for m3 = 1:1:M3                                    % Start space evolution _";pk  _  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 9x{prCr  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; +vSE}  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; fO(S+}  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform AX RNV  
   sca2 = fftshift(fft(s2)); T`ZJ=gv  
   sca3 = fftshift(fft(s3)); "[S 6w  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   AR6vc  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); l4reG:uYG  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); jyH_/X5i7  
   s3 = ifft(fftshift(sc3)); h:sG23@=  
   s2 = ifft(fftshift(sc2));                       % Return to physical space kD7(}N8YR  
   s1 = ifft(fftshift(sc1)); iQ"F`C  
end Hll}8d6[  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &*GX:0=/>  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); slfVQ809  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); \o)4m[oF  
   P1=[P1 p1/p10]; :=eUNH  
   P2=[P2 p2/p10]; J\D3fh97-  
   P3=[P3 p3/p10]; 2B dr#qr  
   P=[P p*p]; :Rj,'uH+h)  
end 1ZFSz{  
figure(1) ea>\.D-S  
plot(P,P1, P,P2, P,P3); 4H)" d  
|bnjC$b*  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计