首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 3T|xUY)G4  
"s!|8F6$  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of p;Lp-9H\33  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of i.(kX`~J1  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear z+k[HE^S  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )5O E~}>  
hA6D*8oXD  
%fid=fopen('e21.dat','w'); 8(b C.  
N = 128;                       % Number of Fourier modes (Time domain sampling points) GjfPba4>  
M1 =3000;              % Total number of space steps k,kr7'Q  
J =100;                % Steps between output of space 1c%ee$Q  
T =10;                  % length of time windows:T*T0 !L=RhMI  
T0=0.1;                 % input pulse width k\NwH?ppu  
MN1=0;                 % initial value for the space output location [\rnJ lE  
dt = T/N;                      % time step ]m(C}}  
n = [-N/2:1:N/2-1]';           % Index [`]h23vRW  
t = n.*dt;   4^jIV!V  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 lQ]8PR t8  
u20=u10.*0.0;                  % input to waveguide 2 @uJ^k >B  
u1=u10; u2=u20;                 fGz++;b<S  
U1 = u1;   NY,ZTl_  
U2 = u2;                       % Compute initial condition; save it in U oQS_rv\Ber  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :Nt_LsH  
w=2*pi*n./T; ?C6DK{S(  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T G""L1?  
L=4;                           % length of evoluation to compare with S. Trillo's paper *>#mI/#}  
dz=L/M1;                       % space step, make sure nonlinear<0.05 )^)j=xs  
for m1 = 1:1:M1                                    % Start space evolution WA$Ug  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Wj}PtQ%lp/  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 'WC> _ L  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform #j?SdQ  
   ca2 = fftshift(fft(u2)); >B~vE2^tQ~  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation jMP!/t :w  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   =rB=! ;  
   u2 = ifft(fftshift(c2));                        % Return to physical space 6M/*]jLq4  
   u1 = ifft(fftshift(c1)); \d&/,?,Ey  
if rem(m1,J) == 0                                 % Save output every J steps. R=ipK63  
    U1 = [U1 u1];                                  % put solutions in U array $ OAak  
    U2=[U2 u2]; t V:oBT*  
    MN1=[MN1 m1]; 2l YA% n  
    z1=dz*MN1';                                    % output location (=/%_jj  
  end O7x'q<PFU  
end 7F;dLd'  
hg=abs(U1').*abs(U1');                             % for data write to excel c'XvZNf .C  
ha=[z1 hg];                                        % for data write to excel G8Qo]E9-/  
t1=[0 t']; @8;0p  
hh=[t1' ha'];                                      % for data write to excel file ?vd_8C2B  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format $UX^$gG  
figure(1) 1yg5d9  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 5e|2b] f$  
figure(2) bY>JLRQJ-  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn hHoc>S6^M  
YO3$I!(  
非线性超快脉冲耦合的数值方法的Matlab程序 B4>kx#LR  
]JUb;B;Z  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   jr=>L:  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iax6o+OG|  
YM(` E9{h  
K~MTbdg  
#dKHU@+U"  
%  This Matlab script file solves the nonlinear Schrodinger equations Vjc*D]  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of D{J+}*y  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [tP6FdS/M=  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "92Z"I~1  
j_I  
C=1;                           |fd}B5!c  
M1=120,                       % integer for amplitude ENEnHu^  
M3=5000;                      % integer for length of coupler m K);NvJ!  
N = 512;                      % Number of Fourier modes (Time domain sampling points) HfN:oww  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. w{HDCPuS  
T =40;                        % length of time:T*T0. -$8M#n,  
dt = T/N;                     % time step Bv)4YU  
n = [-N/2:1:N/2-1]';          % Index 4wa8Vw`  
t = n.*dt;   F[65)"^  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. bns([F  
w=2*pi*n./T; :q+D`s  
g1=-i*ww./2; LM~,`#3 Ru  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; EA/+~ux  
g3=-i*ww./2; potb6jc?  
P1=0; c[DC  
P2=0; 2Q/#.lNL  
P3=1; 7LB#\2  
P=0; JuD$CHg;#  
for m1=1:M1                 ^&|$&7  
p=0.032*m1;                %input amplitude 8r 4 L4  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 HxgH*IMs  
s1=s10; ~5f|L(ODX  
s20=0.*s10;                %input in waveguide 2 | gou#zi  
s30=0.*s10;                %input in waveguide 3 P!Mz5QZ+  
s2=s20; =h"*1`  
s3=s30; CL U[')H0  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !{L6 4qI  
%energy in waveguide 1 lYz$~/sd  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   NyJ=^=F#  
%energy in waveguide 2 >;ucwLi  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   j+p=ik  
%energy in waveguide 3 XP$1CWI  
for m3 = 1:1:M3                                    % Start space evolution lk5}bnd5  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 0k];%HV|  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; u}[Z=V  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &>!WhC16  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform :h|nV ~  
   sca2 = fftshift(fft(s2)); D-zqu~f`  
   sca3 = fftshift(fft(s3)); %mda=%Yn  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   (:p&[HNuN  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Dyx3N5?C  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !7:~"kk  
   s3 = ifft(fftshift(sc3)); lIN`1vX(  
   s2 = ifft(fftshift(sc2));                       % Return to physical space p:,(r{*?  
   s1 = ifft(fftshift(sc1)); f"0{e9O]2  
end S"Q$ Ol"  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); FDHa|<oz  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); qP"<vZ  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); *d,u)l :S  
   P1=[P1 p1/p10]; CPI7&jqu  
   P2=[P2 p2/p10]; } r#by%P  
   P3=[P3 p3/p10]; ;tR,w   
   P=[P p*p]; e3L<;MAt  
end XG5mfKMt+  
figure(1) 8: KlU(J  
plot(P,P1, P,P2, P,P3); jocu=Se@  
8bB'[gJ]{  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计