首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 !=PH5jTY  
7<*0fy5nn  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of h@\-]zN{  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of li v=q  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &M<"Fmn  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 tpEy-"D&  
U~)5{  
%fid=fopen('e21.dat','w'); "igA^^?X1N  
N = 128;                       % Number of Fourier modes (Time domain sampling points) w8R7Ksn(  
M1 =3000;              % Total number of space steps ZS4dW_*[  
J =100;                % Steps between output of space {U$XHG  
T =10;                  % length of time windows:T*T0 =0] K(p,  
T0=0.1;                 % input pulse width bGL}nPo  
MN1=0;                 % initial value for the space output location *?d\Zcj85[  
dt = T/N;                      % time step d~rA`!s7`  
n = [-N/2:1:N/2-1]';           % Index cW_wIy\]&  
t = n.*dt;   =X^a  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 F-rhxJd  
u20=u10.*0.0;                  % input to waveguide 2 u"(NN9s  
u1=u10; u2=u20;                 :Ae#+([V  
U1 = u1;   H v/5)  
U2 = u2;                       % Compute initial condition; save it in U kP+,x H)1  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ^67}&O^1 ,  
w=2*pi*n./T; 9  @ <  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T B>>_t2IU  
L=4;                           % length of evoluation to compare with S. Trillo's paper NJgu`@YoI  
dz=L/M1;                       % space step, make sure nonlinear<0.05 IqFcrU$4  
for m1 = 1:1:M1                                    % Start space evolution 2t_g\Q  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Zv!XNc!"$y  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Q"D  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform NQ;X|$!zH  
   ca2 = fftshift(fft(u2)); +aL  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 89^g$ ac  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Qs za,09  
   u2 = ifft(fftshift(c2));                        % Return to physical space fX 1%I  
   u1 = ifft(fftshift(c1)); O50<h O]l  
if rem(m1,J) == 0                                 % Save output every J steps. 9xz@2b@  
    U1 = [U1 u1];                                  % put solutions in U array ^pd7nr~Y  
    U2=[U2 u2]; MnqT?Cc4$j  
    MN1=[MN1 m1]; b way+lh  
    z1=dz*MN1';                                    % output location No6-i{HZ  
  end P?f${ t+  
end :%J;[bS+  
hg=abs(U1').*abs(U1');                             % for data write to excel ;YY<KuT  
ha=[z1 hg];                                        % for data write to excel i6k6l%  
t1=[0 t']; oF>`>  
hh=[t1' ha'];                                      % for data write to excel file A :KZyd"Z  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format xtD(tiqh.;  
figure(1) B E8_.>  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn WwTl|wgvyI  
figure(2) HQ9tvSc  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0+op|bdj  
`r-Jy{!y4  
非线性超快脉冲耦合的数值方法的Matlab程序 F7O*%y.';  
8)?&eE'  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   "Y L^j~A  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e,p*R?Y{[  
!`H{jwH  
u28$V]  
PkyX,mr#1  
%  This Matlab script file solves the nonlinear Schrodinger equations ~Yg) 8  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9#P~cW?  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S-o )d  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "1^tVw|  
y[.lfW?)  
C=1;                           -ak. wwx\  
M1=120,                       % integer for amplitude X9|*`h<  
M3=5000;                      % integer for length of coupler X41Qkf{  
N = 512;                      % Number of Fourier modes (Time domain sampling points) //|B?4kk  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 2;"vF9WMm  
T =40;                        % length of time:T*T0. 7L&,Na  
dt = T/N;                     % time step 9y&;6V.'  
n = [-N/2:1:N/2-1]';          % Index DFQ`(1Q  
t = n.*dt;   Q njK<}M9  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. YYFS ({  
w=2*pi*n./T; _F[a2PE2+  
g1=-i*ww./2; ww7nQ}H5(  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; AN:s%w2  
g3=-i*ww./2; lJ=EP.T  
P1=0; =dHdq D  
P2=0; nTo?~=b  
P3=1; 2>^(&95M  
P=0; Ew{*)r)m  
for m1=1:M1                 $$.q6  
p=0.032*m1;                %input amplitude ^&86VBP  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 h_P  
s1=s10; ;}f {o^]'  
s20=0.*s10;                %input in waveguide 2 5<`83; R9  
s30=0.*s10;                %input in waveguide 3 ktynIN  
s2=s20; iR9duP+  
s3=s30; iOhX\@&  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   k3t]lG p  
%energy in waveguide 1 J`0dF<<{[y  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   [Q8Wy/o Q  
%energy in waveguide 2 +{=U!}3|  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   m?yztm~u  
%energy in waveguide 3 r`sKe &  
for m3 = 1:1:M3                                    % Start space evolution ~Azj Y8  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS _u6N aB  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; rp<~=X  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; D`[@7$t  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform :}fA98S  
   sca2 = fftshift(fft(s2)); R"HV|Dm|m  
   sca3 = fftshift(fft(s3)); cE`qfz  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   CfS;F  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U_'M9g{,<  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); q] pHD})O  
   s3 = ifft(fftshift(sc3)); .p=J_%K}0x  
   s2 = ifft(fftshift(sc2));                       % Return to physical space &g90q   
   s1 = ifft(fftshift(sc1)); _i7yyt;h  
end A#?Cts ,M  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); P8h|2,c%  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ^Tj{}<yT  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &$2d=q8mh  
   P1=[P1 p1/p10]; `?[,1   
   P2=[P2 p2/p10]; %wru)  
   P3=[P3 p3/p10]; 6 F39'  
   P=[P p*p]; _]ZlGq!L  
end ct=K.m@E%X  
figure(1) ,d lq2  
plot(P,P1, P,P2, P,P3); CF-tod  
PWp=}f.y  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计