| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 [Bl
$IfU 98X!uh' % This Matlab script file solves the coupled nonlinear Schrodinger equations of !y.ei1diw % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `2Wl % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3"^a
rK^N % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !x`;>0 h=uiC&B %fid=fopen('e21.dat','w'); l R:Ok8e N = 128; % Number of Fourier modes (Time domain sampling points) qlz( W M1 =3000; % Total number of space steps z8
hTZU J =100; % Steps between output of space Ll008.# T =10; % length of time windows:T*T0 j9{O0[v T0=0.1; % input pulse width RpBiE8F4 MN1=0; % initial value for the space output location $KoPGgC[ dt = T/N; % time step aQz|!8Is n = [-N/2:1:N/2-1]'; % Index b>hBct} t = n.*dt; !SLP8|Cd u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 d-6sC@PB u20=u10.*0.0; % input to waveguide 2 P?Gd}mdX?m u1=u10; u2=u20; ^%K1R; U1 = u1; +z]:CF U2 = u2; % Compute initial condition; save it in U lfU"SSQ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. d&PE,$XC w=2*pi*n./T; HMEs8. g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T gmF_~"^34 L=4; % length of evoluation to compare with S. Trillo's paper htUy2v#V dz=L/M1; % space step, make sure nonlinear<0.05 H{ n>KZ]\ for m1 = 1:1:M1 % Start space evolution Mr5('9% u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS _Ewy^;S%L u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; !uj! ca1 = fftshift(fft(u1)); % Take Fourier transform W,9k0t ca2 = fftshift(fft(u2)); ;Zx K3/(7 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 9[t]] c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Sah<sb= u2 = ifft(fftshift(c2)); % Return to physical space L337/8fh u1 = ifft(fftshift(c1)); GsP@ B' if rem(m1,J) == 0 % Save output every J steps. @!L@UP0 U1 = [U1 u1]; % put solutions in U array n&2=6$*,k U2=[U2 u2]; eeI9[lTw MN1=[MN1 m1]; 6SW|H"!! z1=dz*MN1'; % output location EO o'a end KRnB[$3F1 end wS F!Xx0 hg=abs(U1').*abs(U1'); % for data write to excel 7.lK$J: ha=[z1 hg]; % for data write to excel s]nGpA[! t1=[0 t']; YO.`l~ v hh=[t1' ha']; % for data write to excel file %9~kA5Qj %dlmwrite('aa',hh,'\t'); % save data in the excel format ?;AL F figure(1) uJ|5Ve waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn DU*g~{8T$ figure(2) ^td!g1"< waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn dN$D6* M/8#&RycQ
非线性超快脉冲耦合的数值方法的Matlab程序 J-eA,9J @}zS/LO 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Q^1#xBd Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?vht~5' +h gaBJy OVQxZ~uQ |(J
?#? % This Matlab script file solves the nonlinear Schrodinger equations yO$r'9?,* % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of T0*TTB&b % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $ sA~p_] % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 eSvc/ CU 2kp|zX( C=1; _Ssv:xc, M1=120, % integer for amplitude hIzPy3 M3=5000; % integer for length of coupler #RLch N = 512; % Number of Fourier modes (Time domain sampling points) TeGLAt
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
eo<~1w T =40; % length of time:T*T0. vZ_DG}n11 dt = T/N; % time step jziA;6uL n = [-N/2:1:N/2-1]'; % Index 2t]! {L t = n.*dt; 9|G=KN)P: ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 8,H#t@+MT w=2*pi*n./T; :nbW.B3GV g1=-i*ww./2; ,h wf g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; c~0VNuN g3=-i*ww./2; m|#(gX|F P1=0; *xZQG9`kt P2=0; qs8K jG@ P3=1; qN`]*baS P=0; Ro3I/NI> for m1=1:M1 zM8/s96h p=0.032*m1; %input amplitude @WDqP/4 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 *]>OCGsr s1=s10; 4Ow
Vt& s20=0.*s10; %input in waveguide 2 zhR_qW+ s30=0.*s10; %input in waveguide 3 >ihe|WN s2=s20; UQji7K } s3=s30; m|Q&Lphb8 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); |$|n V^y %energy in waveguide 1 D)/XP p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); G.q^Zd#.T %energy in waveguide 2 /xrq'|r?C p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); K_lCDiqG %energy in waveguide 3 d@>k\6%j for m3 = 1:1:M3 % Start space evolution RQK** s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS bcx{_&1p s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z7l;|T s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ss*2TE7 sca1 = fftshift(fft(s1)); % Take Fourier transform 6 peM4X sca2 = fftshift(fft(s2)); 4K?H-Jco sca3 = fftshift(fft(s3)); `bt)'ERO%# sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift We+FP9d % sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); BI]ut|Qw sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); GE3U0w6WbK s3 = ifft(fftshift(sc3)); PEQvEruZ} s2 = ifft(fftshift(sc2)); % Return to physical space nO.+&kA s1 = ifft(fftshift(sc1)); #V9hG9%8 end Kn9=a -b?, p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); zC>(!fJqq p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); [2j(\vC! p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); koWb@V] P1=[P1 p1/p10]; $d??( P2=[P2 p2/p10]; e[k;SSs P3=[P3 p3/p10]; sp|y/r# P=[P p*p]; ks` end JpHsQ8< figure(1) r`E1<aCr| plot(P,P1, P,P2, P,P3); W-ND<=:Up 0Eg r
Q 转自:http://blog.163.com/opto_wang/
|
|