首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 &NjZD4m`=  
rg^\BUa-W,  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of !VX_'GyK  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 7Y|>xx=v  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xO<-<sRA  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^P g YP  
0aTbzOn&  
%fid=fopen('e21.dat','w'); ~wf~b zs  
N = 128;                       % Number of Fourier modes (Time domain sampling points) }0*ra37z>  
M1 =3000;              % Total number of space steps jnp6qpY{  
J =100;                % Steps between output of space T:%wX9W  
T =10;                  % length of time windows:T*T0 liw 9:@+V  
T0=0.1;                 % input pulse width fyq] M_5  
MN1=0;                 % initial value for the space output location :.[5('  
dt = T/N;                      % time step uxMy 1oy  
n = [-N/2:1:N/2-1]';           % Index FR,#s^kF  
t = n.*dt;   6a]f&={E  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 K: o|kd  
u20=u10.*0.0;                  % input to waveguide 2 Ya&\ly /i  
u1=u10; u2=u20;                 _2X6bIE  
U1 = u1;   *_/eAi/WG  
U2 = u2;                       % Compute initial condition; save it in U iC|6roO!jk  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. EXW 6yXLV  
w=2*pi*n./T; CDwIq>0j  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Pv %vx U  
L=4;                           % length of evoluation to compare with S. Trillo's paper 5?{ >9j5  
dz=L/M1;                       % space step, make sure nonlinear<0.05 %{~mk[d3  
for m1 = 1:1:M1                                    % Start space evolution D0y,TF  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS TQ\wHJ  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ssX6kgq_(  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform lmtQr5U  
   ca2 = fftshift(fft(u2)); [+MH[1Vr={  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Z>Kcz^a#  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   gvc' $9%  
   u2 = ifft(fftshift(c2));                        % Return to physical space o(X90X  
   u1 = ifft(fftshift(c1)); n?e@):  
if rem(m1,J) == 0                                 % Save output every J steps.  sx(l  
    U1 = [U1 u1];                                  % put solutions in U array G9'YgW+$7  
    U2=[U2 u2]; \B>[je-d  
    MN1=[MN1 m1]; !/Bw,y ri<  
    z1=dz*MN1';                                    % output location (m3I#L  
  end wO_pcNYZ8  
end 4&]To@>  
hg=abs(U1').*abs(U1');                             % for data write to excel j^$3vj5E[  
ha=[z1 hg];                                        % for data write to excel uWR,6\_jY  
t1=[0 t']; t=W$'*P0}  
hh=[t1' ha'];                                      % for data write to excel file kf^-m/  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format 34m']n  
figure(1) [Z5}2gB&  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn !skb=B#  
figure(2) q(&^9"  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn q0b`HD  
Z\*5:a]  
非线性超快脉冲耦合的数值方法的Matlab程序 C?/r}ly<\  
Bgk~R.l  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   fD\^M{5f  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qtdxMX]iR  
0.u9f`04  
[!:-m61  
cFI7}#,5  
%  This Matlab script file solves the nonlinear Schrodinger equations qrM{b=  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of @ yg| OA}  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7SA-OFM  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VeD+U~ d  
nv_m!JG7  
C=1;                           XC7Ty'#"KX  
M1=120,                       % integer for amplitude 0$f_or9T  
M3=5000;                      % integer for length of coupler N'eQ>2>O@  
N = 512;                      % Number of Fourier modes (Time domain sampling points) - 5o<Q'(  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Y>78h2AU  
T =40;                        % length of time:T*T0. =2;mxJ#o  
dt = T/N;                     % time step B{OW}D$P#  
n = [-N/2:1:N/2-1]';          % Index 1C}pv{0:&  
t = n.*dt;   ~ F?G5cN5  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ]uStn   
w=2*pi*n./T; e_I; y  
g1=-i*ww./2; vR%j#v|s  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @Hspg^  
g3=-i*ww./2; ) 8x:x7?  
P1=0; 7,W]zKH  
P2=0; {FV,j.D  
P3=1; W2F +^  
P=0; C;d|\[7Z  
for m1=1:M1                 }sTH.%  
p=0.032*m1;                %input amplitude L)kb (TH  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ]HJ{dcF  
s1=s10; ;1*m} uNz  
s20=0.*s10;                %input in waveguide 2 B&4fYpn  
s30=0.*s10;                %input in waveguide 3 B91S h`  
s2=s20; 5T$9'5V7  
s3=s30; iioct_7,g<  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   TZ&4  
%energy in waveguide 1 [|:QE~U@  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5 4ak<&?  
%energy in waveguide 2 RsqRR`|X?  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   QQ^Gd8nQ  
%energy in waveguide 3 _" ?c9  
for m3 = 1:1:M3                                    % Start space evolution ot|N;=ZKo  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Xk{!' 0  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; LPq*ZZK  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Cbgj@4H  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform pr62:  
   sca2 = fftshift(fft(s2)); (TT3(|v  
   sca3 = fftshift(fft(s3)); 5`4}A%@&  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   f nLR  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); avu*>SB  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); XPHQAo[(s  
   s3 = ifft(fftshift(sc3)); Gt^|+[gD  
   s2 = ifft(fftshift(sc2));                       % Return to physical space 8BYIxHHz  
   s1 = ifft(fftshift(sc1)); 2gQY8h8  
end 8Zcol$XS'  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ! 6p>P4TT  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); i_ |9<7a  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); c&E*KfOG  
   P1=[P1 p1/p10]; l 8O"w&  
   P2=[P2 p2/p10]; &ui:DZAxj|  
   P3=[P3 p3/p10]; C-s>1\I  
   P=[P p*p]; |Hx%f  
end kJ%{ [1fr  
figure(1) /[\6oa  
plot(P,P1, P,P2, P,P3); D+| K%_Qq  
~mN g[]  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计