| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 <P5;8 ,\DB8v6l\A % This Matlab script file solves the coupled nonlinear Schrodinger equations of 8y!fqXm%) % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 38Z"9 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rA9x T` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Em@h5V h ;5
-X7 %fid=fopen('e21.dat','w'); @WU_GQas3 N = 128; % Number of Fourier modes (Time domain sampling points) ,/W<E M1 =3000; % Total number of space steps 4W.;p"S2 J =100; % Steps between output of space ooIMN = T =10; % length of time windows:T*T0 .KT+,Y T0=0.1; % input pulse width !r.}y|t?; MN1=0; % initial value for the space output location NI(`o8fN dt = T/N; % time step i:kWO7aP n = [-N/2:1:N/2-1]'; % Index J5Fg]O* t = n.*dt; DcbL$9UI u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 #s#z@F u20=u10.*0.0; % input to waveguide 2 MQY1he2M u1=u10; u2=u20; 2,&lGyV# U1 = u1; &,."=G U2 = u2; % Compute initial condition; save it in U 2c%}p0<;|? ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. d=qpTb;( w=2*pi*n./T; RC (v#G g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T hCT%1R}rKr L=4; % length of evoluation to compare with S. Trillo's paper G>mgoN dz=L/M1; % space step, make sure nonlinear<0.05 kM3BP&
3m1 for m1 = 1:1:M1 % Start space evolution HxY,R^ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS L''0`a. +S u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; qqzQKN ca1 = fftshift(fft(u1)); % Take Fourier transform a
LmVOL{ ca2 = fftshift(fft(u2)); mZ;yk( c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 2J4|7UwJ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift G<jpJ u2 = ifft(fftshift(c2)); % Return to physical space ZVp\5V* u1 = ifft(fftshift(c1)); 0!vC0T[ if rem(m1,J) == 0 % Save output every J steps.
kw-/h+lG U1 = [U1 u1]; % put solutions in U array -Ez| U2=[U2 u2]; NxXVW MN1=[MN1 m1]; eF8`an5S z1=dz*MN1'; % output location INbjk;k end ^2kWD8c* end 0dcXgP hg=abs(U1').*abs(U1'); % for data write to excel km c9P& ha=[z1 hg]; % for data write to excel gv[7h'}< t1=[0 t']; a ^)Mx9 hh=[t1' ha']; % for data write to excel file 4G>|It %dlmwrite('aa',hh,'\t'); % save data in the excel format ==XP}w)m figure(1) |O4A+S waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn rd,mbH[<C figure(2) 7 $9fGo waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn oy r2lfz* HJJ^pk& 非线性超快脉冲耦合的数值方法的Matlab程序 0X0D8H(7Q :x{Q 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 4{vd6T}V! Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m@O\Bi}=} #`p>VXBj! bf74 " <Y#R]gf1 % This Matlab script file solves the nonlinear Schrodinger equations z'qVEHc) % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kQ#eWk J, % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :>X7(&j8 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h+74W0
$ 4iLU "~ C=1; M)J *Df0@ M1=120, % integer for amplitude W1@;94Sb~ M3=5000; % integer for length of coupler sd[QtK^ N = 512; % Number of Fourier modes (Time domain sampling points) wFJK!9KA8 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. Agi1r]W T =40; % length of time:T*T0. gNqV>p dt = T/N; % time step zJnVO$A' n = [-N/2:1:N/2-1]'; % Index P+b^;+\1s t = n.*dt; {;4PP463 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 4w
z
6% w=2*pi*n./T; DO\EB6xH>% g1=-i*ww./2; 'u3+k. g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9#(QS+q~ g3=-i*ww./2; ~d8>#v=Q` P1=0; +E [b Lz^ P2=0; <dN=d3S
P3=1; =N{e iJ.(p P=0; WsV3>=@f for m1=1:M1 ]T51;j'48 p=0.032*m1; %input amplitude 2Y4&Sba^Y s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 btF%}<o) s1=s10; ?8, N4T0) s20=0.*s10; %input in waveguide 2 'YR5i^:t s30=0.*s10; %input in waveguide 3 -$)Et | s2=s20; if}]8 s3=s30; *i{.@RX? p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); yy} 0_ %energy in waveguide 1 o3yqG#dA p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
`_'Dj> %energy in waveguide 2 /a(zLHyz) p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); i/J NG %energy in waveguide 3 LgNNtZ&F for m3 = 1:1:M3 % Start space evolution l1)pr{A s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS /
3k\kkv! s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z=p s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; CCY|FK sca1 = fftshift(fft(s1)); % Take Fourier transform 9AYe,R sca2 = fftshift(fft(s2)); \Ep/'Tj& sca3 = fftshift(fft(s3)); O|RO
j sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift lDU:EJ&DHE sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 8-5jr_* sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #Q@6:bBzv s3 = ifft(fftshift(sc3)); t60/f&A#7H s2 = ifft(fftshift(sc2)); % Return to physical space DP_Pqn8p&M s1 = ifft(fftshift(sc1)); 62x< rph end L||yQH7n
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); |<|,RI? p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); is?&%VY p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); R$fIb}PDr P1=[P1 p1/p10]; mF}k}0 P2=[P2 p2/p10]; [T}]Ma*CS P3=[P3 p3/p10]; W>s'4C` P=[P p*p]; Kg`x9._2 end
CDYx/yO figure(1) W79A4l< plot(P,P1, P,P2, P,P3); &8AS=v {}o>nenx\ 转自:http://blog.163.com/opto_wang/
|
|