首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 |f' 8p8J  
 *4yN3y  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of `gguip-C  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of _l&ucA  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /1.rz{wpb  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?2`$3[ET-  
ZK dh%8C  
%fid=fopen('e21.dat','w'); ; B$ *)X9  
N = 128;                       % Number of Fourier modes (Time domain sampling points) 5h^[^*A?  
M1 =3000;              % Total number of space steps 2C/%gcN >  
J =100;                % Steps between output of space >BoSw&T$Q  
T =10;                  % length of time windows:T*T0 .Ff_s  
T0=0.1;                 % input pulse width DeQDH5X"  
MN1=0;                 % initial value for the space output location %$9bce-fcG  
dt = T/N;                      % time step fl uGf  
n = [-N/2:1:N/2-1]';           % Index n0fRu`SNV  
t = n.*dt;   %z)EO9vtr  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 36A;!1  
u20=u10.*0.0;                  % input to waveguide 2 a$}6:E  
u1=u10; u2=u20;                 eyB_l.U7  
U1 = u1;   nNR:cG fG  
U2 = u2;                       % Compute initial condition; save it in U ukihx?5  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. uiMIz?+  
w=2*pi*n./T; nVOqn\m-  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Y!n'" *J>  
L=4;                           % length of evoluation to compare with S. Trillo's paper dR[o|r  
dz=L/M1;                       % space step, make sure nonlinear<0.05 kL;t8{n  
for m1 = 1:1:M1                                    % Start space evolution  W"qL-KW  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 8/q*o>[?  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =K'L|QKF  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform VS`Z_Xn  
   ca2 = fftshift(fft(u2)); UrK"u{G  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation GOr}/y;  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9d\N[[Vu]R  
   u2 = ifft(fftshift(c2));                        % Return to physical space gWu"91Y0>  
   u1 = ifft(fftshift(c1)); cU | _  
if rem(m1,J) == 0                                 % Save output every J steps. 8+(c1  
    U1 = [U1 u1];                                  % put solutions in U array ETelbj;0  
    U2=[U2 u2]; t)(v4^T  
    MN1=[MN1 m1]; zoXuFg  
    z1=dz*MN1';                                    % output location .^H1\p];Lw  
  end RV92qn B  
end l<N?'&  
hg=abs(U1').*abs(U1');                             % for data write to excel o* _g$  
ha=[z1 hg];                                        % for data write to excel 3"tg+DncC  
t1=[0 t']; zJ_My&~  
hh=[t1' ha'];                                      % for data write to excel file l $Zs~@N  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format C yf]`*  
figure(1) S7#0*2#[o  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn NDo^B7 R-  
figure(2) sZm^&h;  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn *a4 b  
% :tr  
非线性超快脉冲耦合的数值方法的Matlab程序 Q9q9<J7j$  
mxhW|}_-j  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   AeQC:  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /cY[at|p  
*NjMb{[ZQ  
i*A$SJ:}  
f#c BQ~  
%  This Matlab script file solves the nonlinear Schrodinger equations buc*rtHfA  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9/H^t* 5t  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear VY{,x;O`  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,whM22Af~{  
T ~|PU{  
C=1;                           c8\g"T  
M1=120,                       % integer for amplitude -W6V,+of  
M3=5000;                      % integer for length of coupler 5W5pRd>Q  
N = 512;                      % Number of Fourier modes (Time domain sampling points) J\GKqt;5@  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. TP^\e_k  
T =40;                        % length of time:T*T0. NIL^UN}  
dt = T/N;                     % time step N$ *>suQ,  
n = [-N/2:1:N/2-1]';          % Index T/ Ez*iQW  
t = n.*dt;   v6(,Ax&  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. cWc$ yE'  
w=2*pi*n./T; [$H( CH`  
g1=-i*ww./2; IjgBa-o/V  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $1=v.'Y  
g3=-i*ww./2; ; ?j~8  
P1=0; Qvs(Rt3?y  
P2=0; +E `063  
P3=1; YFAnlqC  
P=0; GMt)}Hz  
for m1=1:M1                 #Z#_!o  
p=0.032*m1;                %input amplitude eKS:7:X  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 R+x%r&L5F  
s1=s10; &a~L_`\'  
s20=0.*s10;                %input in waveguide 2 n *Q4G}p  
s30=0.*s10;                %input in waveguide 3 xQZ MCd  
s2=s20; J$<:/^t  
s3=s30; ^M"HSewo  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   8L@UB6b\  
%energy in waveguide 1 64;oB_  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   WMRYT"J?N]  
%energy in waveguide 2 kKNk2!z`M  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   sCL/pb]  
%energy in waveguide 3 :v''"+\  
for m3 = 1:1:M3                                    % Start space evolution ]Oig ..LJ  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS XC 57];-  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6Lav.x\W  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; W[@"H1bVH  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 1\=pPys)  
   sca2 = fftshift(fft(s2)); R,fMZHAG  
   sca3 = fftshift(fft(s3)); d#RF0,Y9  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   5I wX\  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); F9ZOSL 8Q  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #a/n5c&6/  
   s3 = ifft(fftshift(sc3)); Z&BM%.NZJ  
   s2 = ifft(fftshift(sc2));                       % Return to physical space !#l0@3  
   s1 = ifft(fftshift(sc1)); <7@mg/T  
end tOu90gu  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ZY~zpC_  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); LS*{]@8q  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $#g#[ /  
   P1=[P1 p1/p10]; I67k M{V  
   P2=[P2 p2/p10]; WXRHG)nvL  
   P3=[P3 p3/p10]; Y*h`),  
   P=[P p*p]; Xd90n>4S  
end D>,$c  
figure(1) eYnLZ&H5O  
plot(P,P1, P,P2, P,P3); 8HHgN`_  
1gf/#+$\  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计