首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 S*n@81Z  
ZfB " E  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of >Bgw}PI  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of A$w4PVS  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A7n\h-b  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |M+<m">E  
&cu lbcz  
%fid=fopen('e21.dat','w'); qBCK40   
N = 128;                       % Number of Fourier modes (Time domain sampling points) {\(L%\sV@  
M1 =3000;              % Total number of space steps ; k)@DX  
J =100;                % Steps between output of space d`F&aC  
T =10;                  % length of time windows:T*T0 3%E74 mOcD  
T0=0.1;                 % input pulse width u07pq4Ly  
MN1=0;                 % initial value for the space output location IEzaK  
dt = T/N;                      % time step ,JEF GI{  
n = [-N/2:1:N/2-1]';           % Index '60 L~`K  
t = n.*dt;   *;fw%PW  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 (t4&,W_spA  
u20=u10.*0.0;                  % input to waveguide 2 Q_Gi]M9  
u1=u10; u2=u20;                 dX)GPC-D7  
U1 = u1;   Et/&^&=\-  
U2 = u2;                       % Compute initial condition; save it in U D &/L:  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. dS<C@(  
w=2*pi*n./T; uNHF'?X  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T /<]{KI  
L=4;                           % length of evoluation to compare with S. Trillo's paper m`FN IY  
dz=L/M1;                       % space step, make sure nonlinear<0.05  0gfA#|'  
for m1 = 1:1:M1                                    % Start space evolution x(eb5YS  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS z d-Tv`L#  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; u6bXv(  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform !H}vu]R  
   ca2 = fftshift(fft(u2)); nTz6LVF  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation <Ce2r"U1e  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   uECsh2Uin  
   u2 = ifft(fftshift(c2));                        % Return to physical space >J>b>SU=-  
   u1 = ifft(fftshift(c1)); =-}[ ^u1  
if rem(m1,J) == 0                                 % Save output every J steps. nVI! @qW  
    U1 = [U1 u1];                                  % put solutions in U array |\g5+fv9  
    U2=[U2 u2]; \ 5,MyB2/`  
    MN1=[MN1 m1]; }sOwp}FV8X  
    z1=dz*MN1';                                    % output location sn?]n~z  
  end WuZ/C_  
end >G~R,{6U  
hg=abs(U1').*abs(U1');                             % for data write to excel @!8ZPiW<  
ha=[z1 hg];                                        % for data write to excel YR;^hs?  
t1=[0 t']; x4/M}%h!;B  
hh=[t1' ha'];                                      % for data write to excel file Y>&Ew*Y  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format b/Xbs0q  
figure(1)  BouTcC  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn .({smN,B  
figure(2) Ey4z.s'-l  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn P'O#I}Dmw<  
= hN !;7G  
非线性超快脉冲耦合的数值方法的Matlab程序 B0ndcB-  
R?p00  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ]Qe{e3p;  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iT)z_  
v= N!SaK{  
DHY@akhrK  
Qr$;AZ G  
%  This Matlab script file solves the nonlinear Schrodinger equations P8?Fm`  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of KR%{a(V;7  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear u SR~@Lj ~  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p+Y>F\r&w  
w/IZDMBf|  
C=1;                           XZ5 /=z  
M1=120,                       % integer for amplitude uy}%0vLo  
M3=5000;                      % integer for length of coupler +tD[9b! m  
N = 512;                      % Number of Fourier modes (Time domain sampling points) b?j< BvQ  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. %bdjBa}  
T =40;                        % length of time:T*T0. 3dDX8M?  
dt = T/N;                     % time step 0]jA<vLR  
n = [-N/2:1:N/2-1]';          % Index >N.]|\V  
t = n.*dt;   >(snII  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. &RTX6%'KY  
w=2*pi*n./T; YLVPAODY  
g1=-i*ww./2; v$ub~Q6W  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ;IpT} ,  
g3=-i*ww./2; %DQhM,c@  
P1=0; D91e\|]  
P2=0; P06R JE  
P3=1; H`geS  
P=0; rgOfNVyJG<  
for m1=1:M1                 =ID 2  
p=0.032*m1;                %input amplitude A?@@*$&  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 T =2=k&|  
s1=s10; p^pOuy8  
s20=0.*s10;                %input in waveguide 2  HyR!O>  
s30=0.*s10;                %input in waveguide 3 =Z+nX0qF  
s2=s20; .n=Z:*JqQ  
s3=s30; /P 2[:[w  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   o'$jNciOW  
%energy in waveguide 1 .m`y><.5  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   A'%1ZQ33O  
%energy in waveguide 2 h48SItY  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   zR32PG>9  
%energy in waveguide 3 JO@|*/mL  
for m3 = 1:1:M3                                    % Start space evolution h)me\U7UC  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS r lKlpl  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; -D^}S"'  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I=!rbF;Z  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform +GAf O0  
   sca2 = fftshift(fft(s2)); QL$S4 J"  
   sca3 = fftshift(fft(s3)); NzW`B^p  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Z,.G%"i3C  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); kZ=s'QRgL  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); d O~O |Xsb  
   s3 = ifft(fftshift(sc3)); \))=gu)I  
   s2 = ifft(fftshift(sc2));                       % Return to physical space . ]8E7  
   s1 = ifft(fftshift(sc1)); wlPx,UqZ  
end leCVK.  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); dCFlM&(i  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $ F S_E  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); c   c  
   P1=[P1 p1/p10]; NOS>8sy  
   P2=[P2 p2/p10]; w%zRHf8C  
   P3=[P3 p3/p10]; aSP4a+\*  
   P=[P p*p]; |G/7_+J6  
end efY8M2  
figure(1) O,.!2wVrN  
plot(P,P1, P,P2, P,P3); Mzd[fR5a8  
dgo3'ZO  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计