| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 - /]ro8V$ ]8NNxaE3 ( % This Matlab script file solves the coupled nonlinear Schrodinger equations of mVcpYyD|k % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
V<$g^Vb % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rUvqAfE&+ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u-=S_e G|Yw
a= %fid=fopen('e21.dat','w'); d+[yW7%J N = 128; % Number of Fourier modes (Time domain sampling points) $]<C C ` M1 =3000; % Total number of space steps tKjPLi71 J =100; % Steps between output of space KwndY,QD T =10; % length of time windows:T*T0 [rC-3sGar T0=0.1; % input pulse width 5?r#6:(yI MN1=0; % initial value for the space output location ClCb.Ozj4 dt = T/N; % time step
Z3<>Z\6D n = [-N/2:1:N/2-1]'; % Index `Rub"zM t = n.*dt; D}XyT/8G3 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 R]VY
PNns u20=u10.*0.0; % input to waveguide 2 16 _HO%v-> u1=u10; u2=u20; LYhgBG, U1 = u1; \bw71( Q U2 = u2; % Compute initial condition; save it in U S7N3L." ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. hZ Gr/5f w=2*pi*n./T; 2f9~:.NgF g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T MC D]n L=4; % length of evoluation to compare with S. Trillo's paper &PI}o dz=L/M1; % space step, make sure nonlinear<0.05 yv=LT~ for m1 = 1:1:M1 % Start space evolution \$}xt`6p u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS bo ' u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; *v)JX _ ca1 = fftshift(fft(u1)); % Take Fourier transform iJv4%|9 ca2 = fftshift(fft(u2)); =G]} L< c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation FY)v rM*yh c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Q:&,8h[ u2 = ifft(fftshift(c2)); % Return to physical space TOdH u1 = ifft(fftshift(c1)); "aHY]E{ if rem(m1,J) == 0 % Save output every J steps. H0Qpc<Z4/ U1 = [U1 u1]; % put solutions in U array BQ{Gp 2N U2=[U2 u2]; 3Bee6N> MN1=[MN1 m1]; }jBr[S5 z1=dz*MN1'; % output location JryDbGc8 end ~
nNsq(4 end vmK<_xbwd hg=abs(U1').*abs(U1'); % for data write to excel VQ5T$,& ha=[z1 hg]; % for data write to excel r5%K2q{ t1=[0 t']; $6}siU7s4 hh=[t1' ha']; % for data write to excel file O6LZ<}oUR %dlmwrite('aa',hh,'\t'); % save data in the excel format Y$uXBTR`y/ figure(1) 0kS[`a(}J waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn N3g[,BE figure(2) q{@j$fMt0 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn pXL_`=3Q zuUf:%k}I 非线性超快脉冲耦合的数值方法的Matlab程序 "5C)gxI^ LbOjKM^- 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 X&nkc/erx Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <&\HXAOd -U)6o"O_CV 6[,*2a8 m663%b(5> % This Matlab script file solves the nonlinear Schrodinger equations I~y[8 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of u4bPj2N8I % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7GY[l3arxv % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zk=5uKcPE o)F^0t C=1; |C?<!6.QmV M1=120, % integer for amplitude RKFj6u M3=5000; % integer for length of coupler ~j}di^<{ N = 512; % Number of Fourier modes (Time domain sampling points) c) Zid1 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. jG)fM? T =40; % length of time:T*T0. }C!N$8d, dt = T/N; % time step | V Ps5 n = [-N/2:1:N/2-1]'; % Index g#ubxC7t< t = n.*dt; KGdL1~ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. <\!+J\YTA w=2*pi*n./T; %>`0hk88 g1=-i*ww./2; LL|$M;S
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; pqFgi_2m g3=-i*ww./2; O&!>C7 P1=0; TV\21 P2=0; pE@Q
(9`b{ P3=1; 9iGUE P=0; A+w51Q for m1=1:M1 (|L0s) p=0.032*m1; %input amplitude )pLde_ k s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 'hfQ4EN s1=s10; fw kX-ON s20=0.*s10; %input in waveguide 2 iIji[>qz s30=0.*s10; %input in waveguide 3 fiqeXE?E s2=s20; .vYU4g] s3=s30; 1.U5gW/3L p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); ^_
L'I%%[ %energy in waveguide 1 CM?dB$AwX p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); =UYZ){rt9E %energy in waveguide 2 fa9c!xDt p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); <x@brXA %energy in waveguide 3 S"0<`{Gv for m3 = 1:1:M3 % Start space evolution ukb2[mb*u s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS 'AU(WHf s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; \)'s6>58| s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; PB00\&6H sca1 = fftshift(fft(s1)); % Take Fourier transform 'MH WNPG0 sca2 = fftshift(fft(s2)); iV;X``S sca3 = fftshift(fft(s3)); {eA0I\c(C sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift .<566g}VP sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); SVWtKc< sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !PJD+SrG s3 = ifft(fftshift(sc3)); >utm\!Gac s2 = ifft(fftshift(sc2)); % Return to physical space k44sV.G4L s1 = ifft(fftshift(sc1)); C1_':-4 end [F{q.mZj p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); gBb+Q, p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); :@#'&(#~ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); NF+^ P1=[P1 p1/p10]; vpu20?E>5z P2=[P2 p2/p10]; %K[_;8 P3=[P3 p3/p10]; ``KimeA~ P=[P p*p]; "
UaUaSg# end dnt: U!TW@ figure(1) $?RxmWsP plot(P,P1, P,P2, P,P3); v&6I\1 60p*$Vqy 转自:http://blog.163.com/opto_wang/
|
|