首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 Cr&ua|%F  
?gkK*\x2  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]/a?:24[  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of l})uYae/  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear d<whb2l  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9uq| VU5  
cB<Zez  
%fid=fopen('e21.dat','w'); c{E-4PYbah  
N = 128;                       % Number of Fourier modes (Time domain sampling points) 8xNKVj)@  
M1 =3000;              % Total number of space steps S`-z$ph}  
J =100;                % Steps between output of space Lt*H|9  
T =10;                  % length of time windows:T*T0 6q5V*sJ&  
T0=0.1;                 % input pulse width YRwS{ e*u  
MN1=0;                 % initial value for the space output location J/mLB7^R  
dt = T/N;                      % time step ]M2>%Dvw  
n = [-N/2:1:N/2-1]';           % Index fpzTv3D=I  
t = n.*dt;   F'"-4YV>&  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 >s{[d$  
u20=u10.*0.0;                  % input to waveguide 2 f5O*Njl  
u1=u10; u2=u20;                 {u!,TDt*  
U1 = u1;   yn7n  
U2 = u2;                       % Compute initial condition; save it in U SY)o<MD  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. x|Q6[Y  
w=2*pi*n./T; YX~H!6l  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Fa;CWyt  
L=4;                           % length of evoluation to compare with S. Trillo's paper iA:CPBv_mu  
dz=L/M1;                       % space step, make sure nonlinear<0.05 \^_F>M  
for m1 = 1:1:M1                                    % Start space evolution Z,!Rj7wZ  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS  Im#3sn  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Sd{>(YWx~  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform l lQ<x  
   ca2 = fftshift(fft(u2)); _)p%  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation (5atU |8r  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   YAO.Ccz  
   u2 = ifft(fftshift(c2));                        % Return to physical space HC$_p,9OV  
   u1 = ifft(fftshift(c1)); R^K<u#>K  
if rem(m1,J) == 0                                 % Save output every J steps. @ws3X\`<C  
    U1 = [U1 u1];                                  % put solutions in U array 1W; +hXx  
    U2=[U2 u2]; oW-luC+  
    MN1=[MN1 m1]; 2#sE\D  
    z1=dz*MN1';                                    % output location \n/_ Px  
  end (}}BZ S&.  
end u< ):gI  
hg=abs(U1').*abs(U1');                             % for data write to excel &ts!D!Hj  
ha=[z1 hg];                                        % for data write to excel ]T+{]t  
t1=[0 t']; tdEu4)6  
hh=[t1' ha'];                                      % for data write to excel file 4Jht{#IIG  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format WM9QC59  
figure(1) }"_S;[{d  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn R$v{ p[  
figure(2) ,u! c|4  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ib]{rmaP  
='YR;  
非线性超快脉冲耦合的数值方法的Matlab程序 VNaa(Q  
0hCJovSG%  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   nIXq2TzJ  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0;o`7f  
(5VP*67  
k4s >sd3 5  
dxxD%lHCF  
%  This Matlab script file solves the nonlinear Schrodinger equations YI&7s_% -  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of X8F _Mb*  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <?QY\wyikz  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 N!aV~\E  
J*qepq`_  
C=1;                           Spt[b.4mF  
M1=120,                       % integer for amplitude Z=4Krfn  
M3=5000;                      % integer for length of coupler Peh( *D{  
N = 512;                      % Number of Fourier modes (Time domain sampling points) ]MRE^Je\h  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. qFt%{~a S  
T =40;                        % length of time:T*T0. .}%$l.#a  
dt = T/N;                     % time step %TvunV7NQS  
n = [-N/2:1:N/2-1]';          % Index ~1i,R1_\Y  
t = n.*dt;   f!eC|:D  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. |l `X]dsfQ  
w=2*pi*n./T; '&'? S  
g1=-i*ww./2; ,H[-.}OO  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; m},nKsO  
g3=-i*ww./2; )d_)CuUBe  
P1=0; &(IL`%  
P2=0; ?7Y X @x  
P3=1; ?20y6c<  
P=0; +TfMj1Zx  
for m1=1:M1                 ko>SnE|w#  
p=0.032*m1;                %input amplitude KSMe#Qnw  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :~{XL>:S  
s1=s10; !f V.#9AB#  
s20=0.*s10;                %input in waveguide 2 {y)s85:t  
s30=0.*s10;                %input in waveguide 3 qL,QsRwN  
s2=s20; /Vg R[  
s3=s30; RT F9;]Ti  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )U`H7\*)  
%energy in waveguide 1 uZW ?0W  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ph<Z/wlz  
%energy in waveguide 2 Gg{@]9  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   k'xnl"q  
%energy in waveguide 3 rPZ<  
for m3 = 1:1:M3                                    % Start space evolution iS hB ^  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 7Q/v#_e(  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; gOx4qxy/m|  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 0v,DQJ?w8  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform ;_F iiBk7(  
   sca2 = fftshift(fft(s2)); v}M, M&?  
   sca3 = fftshift(fft(s3)); EJNj.c-#  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   VjMd&>G  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); k&n7 _[]n  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); FJ!N)`[  
   s3 = ifft(fftshift(sc3)); q@8Rlc&  
   s2 = ifft(fftshift(sc2));                       % Return to physical space oB&s2~  
   s1 = ifft(fftshift(sc1)); Bb}JyT  
end ]zhFFq`  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0d9rJv}~  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); nx $?wxIm  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); nR!qolh  
   P1=[P1 p1/p10]; &pZ]F=.r+  
   P2=[P2 p2/p10]; [A yq%MA  
   P3=[P3 p3/p10]; D4c}z#}*0  
   P=[P p*p]; >Cb% `pe  
end TAi |]U!  
figure(1) pE^LQi  
plot(P,P1, P,P2, P,P3); kFw3'OZ,  
WN?!(r<qA_  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计