| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 }}^,7npU w/b>awI % This Matlab script file solves the coupled nonlinear Schrodinger equations of Usa+b
A % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of IVI~1~ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear up\oWR: % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 CQ6'b,L& YCa@R!M*O %fid=fopen('e21.dat','w'); ;y>S7n>n: N = 128; % Number of Fourier modes (Time domain sampling points) H~A"C'P3# M1 =3000; % Total number of space steps "w}-?:# j J =100; % Steps between output of space ?PBa'g T =10; % length of time windows:T*T0 >5)<Uv$ T0=0.1; % input pulse width :ozV3`%$( MN1=0; % initial value for the space output location T
n"e dt = T/N; % time step &+mV7o n = [-N/2:1:N/2-1]'; % Index J|VK P7 t = n.*dt; c |>=S)| u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 8F#osN u20=u10.*0.0; % input to waveguide 2 +c^_^Z$_4o u1=u10; u2=u20; Iz
DG&c U1 = u1; Fi mN?s U2 = u2; % Compute initial condition; save it in U 9n1ZVP.ag ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. !Y (apVQ w=2*pi*n./T; QX[Djz0H8 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T J,f/fPaf7 L=4; % length of evoluation to compare with S. Trillo's paper o^3FL||P#r dz=L/M1; % space step, make sure nonlinear<0.05 ^>C11v for m1 = 1:1:M1 % Start space evolution *)u?~r(F u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS `E@kFJ(<On u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; KQ&Y2l1*>> ca1 = fftshift(fft(u1)); % Take Fourier transform 6+.>5e ca2 = fftshift(fft(u2)); D^Te%qnW c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation !; IJ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift {P-xCmZ~Wt u2 = ifft(fftshift(c2)); % Return to physical space {m[s<A( u1 = ifft(fftshift(c1)); <OTWT`G2 if rem(m1,J) == 0 % Save output every J steps. B$rTwR"(- U1 = [U1 u1]; % put solutions in U array +a%xyD:.? U2=[U2 u2]; 5iVQc -m& MN1=[MN1 m1]; (8.{+8o z1=dz*MN1'; % output location 2d*_Qq1 end +R!zs end r'/\HWNP hg=abs(U1').*abs(U1'); % for data write to excel nX|Q~x] ha=[z1 hg]; % for data write to excel \)OEBN`9# t1=[0 t']; x?#I4RJH; hh=[t1' ha']; % for data write to excel file 6B0#4Qrv %dlmwrite('aa',hh,'\t'); % save data in the excel format bNGCOj figure(1) l3. waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn qj&bo figure(2) ',7a E@PJ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn ^i+[m w/W7N 非线性超快脉冲耦合的数值方法的Matlab程序 LN4qYp6)G Y25^]ON*\^ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 `H>b5 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `\bT'~P \q "N/$5{f ciudRK63M 4:7m K/Z % This Matlab script file solves the nonlinear Schrodinger equations t6+YXjXK % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !^e =P%S % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [:iv4>ZZ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Bq@zaMv `9Yn0B. C=1; WF2NG;f= M1=120, % integer for amplitude ]ab#q= M3=5000; % integer for length of coupler E V2 ) N = 512; % Number of Fourier modes (Time domain sampling points) iXFP5a>| dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. }u%"$[I} T =40; % length of time:T*T0. 5+- I5HX|~ dt = T/N; % time step ](#&.q%5! n = [-N/2:1:N/2-1]'; % Index \ECu5L4 t = n.*dt; Ye5jB2Z
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. glE^t6) w=2*pi*n./T; "7,FXTaer g1=-i*ww./2; Z
o=]dBp. g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; PE"v*9k g3=-i*ww./2; 9XLFHV(" P1=0; 9Ma0^_ P2=0; O/Rhf[7v* P3=1; @*>Sw>oet P=0; hIYTe for m1=1:M1 FY'ty@|_s p=0.032*m1; %input amplitude t
P"\J(x s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 -oyO+1V s1=s10; Wh(
|+rJ?Z s20=0.*s10; %input in waveguide 2 #Yuvbb[ s30=0.*s10; %input in waveguide 3 D)Q)NI s2=s20; -F\qnsZ2 s3=s30; 4-R^/A0 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); ^e Gue %energy in waveguide 1 2;$k(x] p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); !TKkec8$ %energy in waveguide 2 nXA\|c0 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); egk7O4zwP %energy in waveguide 3 ~rD={&0 for m3 = 1:1:M3 % Start space evolution F'JY? s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS 445o DkG s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 9Q;c,] s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 5D Y\:AF sca1 = fftshift(fft(s1)); % Take Fourier transform #]]Su91BA sca2 = fftshift(fft(s2)); (:pq77 sca3 = fftshift(fft(s3)); h3*
x[W sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift F_;DN:
{ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ,=QM#l] sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8RW&r s3 = ifft(fftshift(sc3)); "TcW4U9 s2 = ifft(fftshift(sc2)); % Return to physical space ORN6vX(1 s1 = ifft(fftshift(sc1)); $ ((6=39s end BvD5SBa}" p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); o>Er_r p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2@=IT0[E\ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Hr<o!e{Y P1=[P1 p1/p10]; Iu@y(wyg P2=[P2 p2/p10]; 69K{+| P3=[P3 p3/p10]; qZv
= P=[P p*p]; +rXF{@
l end DZS]AC* figure(1) iRV~Il#~! plot(P,P1, P,P2, P,P3); 6K`c/) @|}BXQNd 转自:http://blog.163.com/opto_wang/
|
|