| tianmen |
2011-06-12 18:33 |
求解光孤子或超短脉冲耦合方程的Matlab程序
计算脉冲在非线性耦合器中演化的Matlab 程序 ?5gpk1 v%Xe)D % This Matlab script file solves the coupled nonlinear Schrodinger equations of xb;mm9H
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ' 1nU[,Wj % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear F4{<;4N0 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jgIzB1H boon=;{p %fid=fopen('e21.dat','w'); {P+[CO N = 128; % Number of Fourier modes (Time domain sampling points) U0T N8O}Z M1 =3000; % Total number of space steps }aIfIJ J =100; % Steps between output of space 'kK%sE T =10; % length of time windows:T*T0 WGK::? T0=0.1; % input pulse width >$F]Ss)$ MN1=0; % initial value for the space output location [J
Xrj{ dt = T/N; % time step g&wQ^ n = [-N/2:1:N/2-1]'; % Index 2N]s}/l t = n.*dt; JH#?}L/0Fe u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 kMXl
{ u20=u10.*0.0; % input to waveguide 2 tTt~W5lo u1=u10; u2=u20; \:7EKzQ U1 = u1; 7L"/4w U2 = u2; % Compute initial condition; save it in U e:<>
Yq+ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. J>35q'nN]F w=2*pi*n./T; xcA:Q`c.{ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W
aU_Z/{0 L=4; % length of evoluation to compare with S. Trillo's paper 1doqznO dz=L/M1; % space step, make sure nonlinear<0.05 VCO/s9AL for m1 = 1:1:M1 % Start space evolution A\Gw+l<h, u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS N5DS-gv u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; NBX/V^ ca1 = fftshift(fft(u1)); % Take Fourier transform nc)`ISI ca2 = fftshift(fft(u2)); |zKcL3* c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation a6_`V; c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 5JXLfYTUI u2 = ifft(fftshift(c2)); % Return to physical space J;dFmZOk u1 = ifft(fftshift(c1)); #4>F%_ if rem(m1,J) == 0 % Save output every J steps. ><~hOK?v U1 = [U1 u1]; % put solutions in U array 5"U7I{\ U2=[U2 u2]; +fN0>@s MN1=[MN1 m1]; u.6%n.g z1=dz*MN1'; % output location $P_Y8: end WW=7QCi end U^D7T|P$V hg=abs(U1').*abs(U1'); % for data write to excel 3$54*J ha=[z1 hg]; % for data write to excel zAewE@N#_ t1=[0 t']; z?xd\x hh=[t1' ha']; % for data write to excel file Z/x~:u_ %dlmwrite('aa',hh,'\t'); % save data in the excel format `u-Y 5mY figure(1) c/RG1w waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn |a+8-@-Tj figure(2) WyP1"e^9 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn 2X`M&)"X |wx1
[xZ 非线性超快脉冲耦合的数值方法的Matlab程序 RiklwR#~r/ Er)b( Kk 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 syF/jWM5 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {$^|^n5j UpILr\3U ^_uzr}LE` dq2v[?*R % This Matlab script file solves the nonlinear Schrodinger equations 5>
UgBA % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of V]2Q92 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ) =[Tgh % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S(pfd2^ y06 2/$*$ C=1; rk|6!kry M1=120, % integer for amplitude s6I]H M3=5000; % integer for length of coupler Z5Cv$bUc N = 512; % Number of Fourier modes (Time domain sampling points) {<@~;iq dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. pyKMi /)bL T =40; % length of time:T*T0. 4.8,&{w<m dt = T/N; % time step dU,/!|.K n = [-N/2:1:N/2-1]'; % Index LPC7Bdjz t = n.*dt; n2E2V<# ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. \xt!b^d0 w=2*pi*n./T; S<TfvQ\,"@ g1=-i*ww./2; 3;A1[E6K g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ?~!h
N,h g3=-i*ww./2; Nn$$yUkMX P1=0; g!$
"CX%8 P2=0; 4{|lzo'& P3=1; eMs`t)rQ P=0; 04s N4C for m1=1:M1 \ys3&<;b p=0.032*m1; %input amplitude m5S/T\,X s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 hRP0Djc s1=s10; ^JTfRZ:a s20=0.*s10; %input in waveguide 2 -&c@c@dC s30=0.*s10; %input in waveguide 3 }~7>S5 s2=s20; ^/c|s!U^ s3=s30; , Le_PJY) p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); E$cr3 t7Xy %energy in waveguide 1 ;RU)Q)a) p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); Z"n]y4h %energy in waveguide 2 "-a>Uj")% p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 8)i\d` %energy in waveguide 3 v#~,)-D& for m3 = 1:1:M3 % Start space evolution m'pihFR:f s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS 4ngiad6bR s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; oR+Fn}mG s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I0Vm^\8 sca1 = fftshift(fft(s1)); % Take Fourier transform {Z|C sca2 = fftshift(fft(s2)); ^3el-dZ sca3 = fftshift(fft(s3)); ? f%@8%px sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift .N%$I6w sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); `p!.K9r7 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); h.67]U7m s3 = ifft(fftshift(sc3)); \UXQy{Ex s2 = ifft(fftshift(sc2)); % Return to physical space y"2c; *7[{ s1 = ifft(fftshift(sc1)); (vQShe\ end DU;]Q:r{ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $lO\eQGxB p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Y$(G)Fs p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Va1|XQ<CL P1=[P1 p1/p10]; D,NjDIG8 P2=[P2 p2/p10]; C ZJW`c/ P3=[P3 p3/p10]; zNBG;\W P=[P p*p]; qWWy}5SOm end \\[P^ tsF figure(1) ~ WVrtY Ju plot(P,P1, P,P2, P,P3); W7.]V)$wM $Q?UyEi 转自:http://blog.163.com/opto_wang/
|
|