首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 0+;.T1?  
wz9V)_V*  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of QZ"Lh  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Bca\grA  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .gv J;A7  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :bW}*0b-  
W&}R7a@:<~  
%fid=fopen('e21.dat','w'); D^04b< O<x  
N = 128;                       % Number of Fourier modes (Time domain sampling points) {_ww1'|A  
M1 =3000;              % Total number of space steps ^g~Asz5]  
J =100;                % Steps between output of space *@dRL3c^=  
T =10;                  % length of time windows:T*T0 "xa<Q%hk  
T0=0.1;                 % input pulse width | 3!a=  
MN1=0;                 % initial value for the space output location '+Gt+Gq+  
dt = T/N;                      % time step 1*[h$Z&H?  
n = [-N/2:1:N/2-1]';           % Index X/];*='Q  
t = n.*dt;   jWiB_8- 6  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 WA8Qt\Q  
u20=u10.*0.0;                  % input to waveguide 2 E%3WJ%A  
u1=u10; u2=u20;                 HpSgGhL'J&  
U1 = u1;   ub{<m^|)  
U2 = u2;                       % Compute initial condition; save it in U c|:H/Y2n|  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 7sC$hm]  
w=2*pi*n./T; 0LrTYrlj  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T aa.EtKl  
L=4;                           % length of evoluation to compare with S. Trillo's paper 2l{g$44  
dz=L/M1;                       % space step, make sure nonlinear<0.05 VDx=Tsu-  
for m1 = 1:1:M1                                    % Start space evolution Q68&CO(rE  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS R6h(mPYA  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; O:+#k-?  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform IW Lv$bPZ/  
   ca2 = fftshift(fft(u2)); 'vhgR2/  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation l-XiQ#-{  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   n9050&_S  
   u2 = ifft(fftshift(c2));                        % Return to physical space lHV bn7  
   u1 = ifft(fftshift(c1)); pTST\0?  
if rem(m1,J) == 0                                 % Save output every J steps. YCj"^RC^  
    U1 = [U1 u1];                                  % put solutions in U array =~?2i)-mC  
    U2=[U2 u2]; z=N'evx~  
    MN1=[MN1 m1]; \Bw9%P~ G  
    z1=dz*MN1';                                    % output location 245(ajxHC  
  end ,`^B!U3m   
end Qa5<go{  
hg=abs(U1').*abs(U1');                             % for data write to excel yj `b-^$?  
ha=[z1 hg];                                        % for data write to excel DFwkd/3"  
t1=[0 t']; sI@m"A  
hh=[t1' ha'];                                      % for data write to excel file ..Zuy|?w  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format /wljb b/s  
figure(1) w[uK3Av  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn KR^lmN  
figure(2) Fs|fo-+H}k  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn W7WHH \L/O  
R N5\,>+  
非线性超快脉冲耦合的数值方法的Matlab程序 Zi|MWaA.f  
j_L 'Ztu3  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (i.MxG Dd  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 y{uRh>l  
=IkQ;L&  
`a ["`N^  
oA(jtX[(  
%  This Matlab script file solves the nonlinear Schrodinger equations %+L:Gm+^g#  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 2ELw}9  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2L[/.|  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 38L8AJqD  
7Wmk"gp  
C=1;                           e-ljwCD  
M1=120,                       % integer for amplitude GLB7h 9>  
M3=5000;                      % integer for length of coupler %ErL L@e  
N = 512;                      % Number of Fourier modes (Time domain sampling points) "w*VyD  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. I?G m  
T =40;                        % length of time:T*T0. !l?Go<^*L  
dt = T/N;                     % time step kUUN2  
n = [-N/2:1:N/2-1]';          % Index .</d$FM JE  
t = n.*dt;   fZ`b~ZBwIj  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. <K=:_  
w=2*pi*n./T; ZK[4n5}  
g1=-i*ww./2; S`8 h]vX  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7m~+HM\  
g3=-i*ww./2; ax[-907  
P1=0; /+1+6MqRn*  
P2=0; 94=Wy-  
P3=1; %C" wUAY  
P=0; t4GG@`  
for m1=1:M1                 5n"b$hMF  
p=0.032*m1;                %input amplitude [c +[t3dz  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Dkay k  
s1=s10; [M65T@v  
s20=0.*s10;                %input in waveguide 2 ;2(8&.  
s30=0.*s10;                %input in waveguide 3 b/:9^&z  
s2=s20; #~^#%G  
s3=s30; VU J*\Sg  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   KS!mzq-  
%energy in waveguide 1 - K0>^2hh  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   J(ZYoJ  
%energy in waveguide 2 G#t!{Q}8  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   z2vrV?:  
%energy in waveguide 3 m=jxTZK  
for m3 = 1:1:M3                                    % Start space evolution -|\V'  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS {f((x1{HZx  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; gXZC%S  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; sWX iY  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform 'h53:?~  
   sca2 = fftshift(fft(s2)); St7ZyN1  
   sca3 = fftshift(fft(s3)); OBqaf )W  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   w!,~#hbt6  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); u27K 0}  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ~2@+#1[g8z  
   s3 = ifft(fftshift(sc3)); ?){V7<'?y  
   s2 = ifft(fftshift(sc2));                       % Return to physical space |k1(|)%G  
   s1 = ifft(fftshift(sc1)); "_WOt Jr  
end J.W0F #?  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); PN:/lIO  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); [~m@'/  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1v)ur\>R  
   P1=[P1 p1/p10]; |=fa`8m G  
   P2=[P2 p2/p10]; ,#W>E,UU  
   P3=[P3 p3/p10]; S+ gzl#r  
   P=[P p*p]; 3B8\r}L  
end JnQ5r>!>3  
figure(1) 89e<,f`h  
plot(P,P1, P,P2, P,P3); lqh+yX%*  
L}5nq@Uu)  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计