首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> MATLAB,SCILAB,Octave,Spyder -> 求解光孤子或超短脉冲耦合方程的Matlab程序 [点此返回论坛查看本帖完整版本] [打印本页]

tianmen 2011-06-12 18:33

求解光孤子或超短脉冲耦合方程的Matlab程序

计算脉冲在非线性耦合器中演化的Matlab 程序 ,zc(t<|-y  
O/LXdz0B  
%  This Matlab script file solves the coupled nonlinear Schrodinger equations of HaYo!.(Fv  
%  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Q2> gU#  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \)e'`29;  
%   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,,r>,Xq 6  
5r0YA IJ  
%fid=fopen('e21.dat','w'); KPki}'GO  
N = 128;                       % Number of Fourier modes (Time domain sampling points) 'GScszz  
M1 =3000;              % Total number of space steps $[|mGae  
J =100;                % Steps between output of space +ge?w#R  
T =10;                  % length of time windows:T*T0 ^zr`;cJ+c  
T0=0.1;                 % input pulse width JXx wr)i  
MN1=0;                 % initial value for the space output location ~J]qP#C  
dt = T/N;                      % time step i/.6>4tE:  
n = [-N/2:1:N/2-1]';           % Index ~#/  
t = n.*dt;   1~gCtBRM  
u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 HOi`$vX }N  
u20=u10.*0.0;                  % input to waveguide 2 gM]:Ma  
u1=u10; u2=u20;                 +[ZY:ZQ  
U1 = u1;   ry]l.@o;  
U2 = u2;                       % Compute initial condition; save it in U k3|Z7eW}[  
ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. +7a6*;\ y  
w=2*pi*n./T; a9Vi];  
g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F"kAkX>3}  
L=4;                           % length of evoluation to compare with S. Trillo's paper "M0z(N kH  
dz=L/M1;                       % space step, make sure nonlinear<0.05 K NOIZj   
for m1 = 1:1:M1                                    % Start space evolution )%]J>&/0J  
   u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS n+p }\msH  
   u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; jWgX_//!  
   ca1 = fftshift(fft(u1));                        % Take Fourier transform Fzcwy V   
   ca2 = fftshift(fft(u2)); kGJC\{N5N  
   c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation O0:q;<>z  
   c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   _v:SP LU  
   u2 = ifft(fftshift(c2));                        % Return to physical space QWU-m{@~&  
   u1 = ifft(fftshift(c1)); 7$#u  
if rem(m1,J) == 0                                 % Save output every J steps. 4e  
    U1 = [U1 u1];                                  % put solutions in U array [><Tm \(:  
    U2=[U2 u2]; bK7J}8hH  
    MN1=[MN1 m1]; bd`P0f?  
    z1=dz*MN1';                                    % output location VaPG-n>Vf  
  end 1H9!5=Ff  
end _dU\JD  
hg=abs(U1').*abs(U1');                             % for data write to excel 4z)]@:`}z  
ha=[z1 hg];                                        % for data write to excel 0}9h]X'  
t1=[0 t']; sRfcF`7  
hh=[t1' ha'];                                      % for data write to excel file <naz+QK'  
%dlmwrite('aa',hh,'\t');                           % save data in the excel format yQrD9*t&g  
figure(1) (% 9$!v{3  
waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,u m|1dh  
figure(2) Ca-j?bb!  
waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn [Qr"cR^  
[hs ds\  
非线性超快脉冲耦合的数值方法的Matlab程序 #E]59_  
W3RT{\  
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   P2Y^d#jO  
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6C)_  
JtZ7ti  
S>{~nOYt-`  
X?Au/  
%  This Matlab script file solves the nonlinear Schrodinger equations LQ% `c  
%  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kVL.PY\K  
%  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ca\6vR  
%  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }7X%'Bg=M  
)e{}V\;q  
C=1;                           Pz^544\~ou  
M1=120,                       % integer for amplitude I:.s_8mH}  
M3=5000;                      % integer for length of coupler Hv, LS ;W  
N = 512;                      % Number of Fourier modes (Time domain sampling points) xC?h2hIt  
dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. @PU [:;  
T =40;                        % length of time:T*T0. r*Xuj=  
dt = T/N;                     % time step @pxcpXCy  
n = [-N/2:1:N/2-1]';          % Index gZ5 |UR<  
t = n.*dt;   Mp]rUPK  
ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 8ipez/  
w=2*pi*n./T; svSVG:48  
g1=-i*ww./2; .^g p?  
g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; = / 8cp  
g3=-i*ww./2; E.f%H(b  
P1=0; 4I7>f]=)  
P2=0; cNH7C"@GVu  
P3=1; ElXFeJ%[G  
P=0; ~5g~;f[4  
for m1=1:M1                 %3 rP `A  
p=0.032*m1;                %input amplitude ])!*_  
s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 o(HbGHIP  
s1=s10; Y ay?=Y{  
s20=0.*s10;                %input in waveguide 2 O@P"MXEG  
s30=0.*s10;                %input in waveguide 3 NO3/rJ6-  
s2=s20; *`U~?q}  
s3=s30; Z{R>  
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   BuwY3F\-O  
%energy in waveguide 1 DrQ`]]jj7  
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   T;uX4,|(  
%energy in waveguide 2 u&NV,6Fj2[  
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));    XilS!,  
%energy in waveguide 3 h\e.e3/  
for m3 = 1:1:M3                                    % Start space evolution $u.z*b_yy  
   s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1"g<0 W  
   s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xfQ1T)F3g  
   s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; AR=]=8  
   sca1 = fftshift(fft(s1));                       % Take Fourier transform $C\BcKlmv  
   sca2 = fftshift(fft(s2)); ZW}_DT0  
   sca3 = fftshift(fft(s3)); 5m*,8]!-  
   sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Vc2`b3"Br  
   sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); nK,w]{<wG!  
   sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9gFUaDLo  
   s3 = ifft(fftshift(sc3)); &o*A {  
   s2 = ifft(fftshift(sc2));                       % Return to physical space Uv.)?YeGh  
   s1 = ifft(fftshift(sc1)); HDLk>_N_s,  
end kFB  
   p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); YMgNzu  
   p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); _L PHPj^Pg  
   p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9my^ Y9B  
   P1=[P1 p1/p10]; uS-|wYE  
   P2=[P2 p2/p10]; 9UkBwS`  
   P3=[P3 p3/p10]; 99S ^f:t  
   P=[P p*p]; e!Hhs/&!T  
end +H.`MZ=  
figure(1) ;I*o@x_  
plot(P,P1, P,P2, P,P3); {FG j]*  
M{\I8oOg  
转自:http://blog.163.com/opto_wang/
ciomplj 2014-06-22 22:57
谢谢哈~!~
查看本帖完整版本: [-- 求解光孤子或超短脉冲耦合方程的Matlab程序 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计