首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {iI" Lt  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! !4(X9}a  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .@  3  
function z = zernfun(n,m,r,theta,nflag) P,|%7'?Y  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. JfJLJ(}  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xb2xl.2x!  
%   and angular frequency M, evaluated at positions (R,THETA) on the TJHab;7F  
%   unit circle.  N is a vector of positive integers (including 0), and UC!?.  
%   M is a vector with the same number of elements as N.  Each element <}@*i  
%   k of M must be a positive integer, with possible values M(k) = -N(k) oV)#s!  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |# _F  
%   and THETA is a vector of angles.  R and THETA must have the same U.fL uKt  
%   length.  The output Z is a matrix with one column for every (N,M) _</>`P[  
%   pair, and one row for every (R,THETA) pair. \i*QKV<  
% x:7"/H|  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }=dUASL  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y ,Iv<Hg  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral MY8[)<q"  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ; i)NP X  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized b9 F:X  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. DLigpid  
% FN$sST  
%   The Zernike functions are an orthogonal basis on the unit circle. Ihd{ @6m  
%   They are used in disciplines such as astronomy, optics, and JE a~avyJ  
%   optometry to describe functions on a circular domain. 6aw1  
% `b11,lg  
%   The following table lists the first 15 Zernike functions. Jv,*rQH  
% 9+"R}Nxv^  
%       n    m    Zernike function           Normalization }T)0:DF1,  
%       -------------------------------------------------- c Y C@@?  
%       0    0    1                                 1 6njwrqo  
%       1    1    r * cos(theta)                    2 F}f/cG<X  
%       1   -1    r * sin(theta)                    2 Y<]A 5cm  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) X6T*?t3!9[  
%       2    0    (2*r^2 - 1)                    sqrt(3) R{3?`x!fY  
%       2    2    r^2 * sin(2*theta)             sqrt(6) n$*e(  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) #OQT@uF!  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) KW&vX%i(.  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) kBRy(?Mft&  
%       3    3    r^3 * sin(3*theta)             sqrt(8) qg`8f?  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) Rk8oshS+2  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >" &&,~  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `W*b?e| H1  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i$z).S?1  
%       4    4    r^4 * sin(4*theta)             sqrt(10) Fk-}2_=v i  
%       -------------------------------------------------- JZUf-0q  
% fF|m~#y  
%   Example 1: 1v?|n8  
% MYlPG1X=?  
%       % Display the Zernike function Z(n=5,m=1) 3d>3f3D8;  
%       x = -1:0.01:1; <hv {,1p-r  
%       [X,Y] = meshgrid(x,x); )HL[_WfY  
%       [theta,r] = cart2pol(X,Y); 0dKv%X#\  
%       idx = r<=1; `{B<|W$=  
%       z = nan(size(X)); vJ a?5Jr  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); [b?[LK}.  
%       figure rIhe}1  
%       pcolor(x,x,z), shading interp R#\o*Ta  
%       axis square, colorbar &~ .n}h&  
%       title('Zernike function Z_5^1(r,\theta)') &x#3N=c#  
% yQ/E0>Uj!  
%   Example 2: dBG5IOD  
% 's>./Pf  
%       % Display the first 10 Zernike functions }R\;htmc;  
%       x = -1:0.01:1; "c2{n,  
%       [X,Y] = meshgrid(x,x); h%[1V  
%       [theta,r] = cart2pol(X,Y); d,:3;:CR  
%       idx = r<=1; =*\(Y (0  
%       z = nan(size(X)); "~nUwW|=1  
%       n = [0  1  1  2  2  2  3  3  3  3]; gc"A Tc  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Y *?hA'  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; f.{/PL  
%       y = zernfun(n,m,r(idx),theta(idx)); -SeHz.` N  
%       figure('Units','normalized') '0tNo.8K  
%       for k = 1:10 8_h:_7e  
%           z(idx) = y(:,k); Y2&hf6BE  
%           subplot(4,7,Nplot(k)) FC&841F  
%           pcolor(x,x,z), shading interp /8Xd2-  
%           set(gca,'XTick',[],'YTick',[]) rT/4w#_3  
%           axis square RGC DC*\  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zYZ^/7)  
%       end C<"b99\2`  
% !`S61~gE  
%   See also ZERNPOL, ZERNFUN2. z.6I6IfL\L  
0J5IO|1M  
%   Paul Fricker 11/13/2006 Q?WgGE4>  
JM>4m)h#  
UkzLUok]U  
% Check and prepare the inputs: J=7<dEm&  
% ----------------------------- 227 Z6#CF!  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^oH!FN`;{  
    error('zernfun:NMvectors','N and M must be vectors.') k.K;7GZC  
end US2Tdmy@05  
daN#6e4Z+;  
if length(n)~=length(m) biy[h3b  
    error('zernfun:NMlength','N and M must be the same length.') dePI&z:  
end -5.~POO  
Ou,Eu05jt'  
n = n(:); aX,ux9#  
m = m(:); _ H$^m#h  
if any(mod(n-m,2)) yaWHGre  
    error('zernfun:NMmultiplesof2', ... >X0c:p Pu  
          'All N and M must differ by multiples of 2 (including 0).') b _%W*Q  
end p({)ZU3  
O9jpt>:kZ  
if any(m>n) b]XDfe  
    error('zernfun:MlessthanN', ... +x:-W0C:  
          'Each M must be less than or equal to its corresponding N.') ns;nle|m  
end jSMs<ox  
;&?l1Vu  
if any( r>1 | r<0 ) w/Ej>OS  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') O({vHqN>  
end wML5T+  
u[yUUYe  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {H$m1=S  
    error('zernfun:RTHvector','R and THETA must be vectors.') w 7Y>B`wm?  
end Ey**j  
o])2_e5  
r = r(:); +'fdAc:5',  
theta = theta(:); +pMjm&CF  
length_r = length(r); Xh*p\ $  
if length_r~=length(theta) Kk t9M\  
    error('zernfun:RTHlength', ... W$_@9W(Bl  
          'The number of R- and THETA-values must be equal.') i[x;k;m2q  
end '.&z y#  
{Kh u'c  
% Check normalization: n gC|BLT%h  
% -------------------- *q/oS8vavd  
if nargin==5 && ischar(nflag) h=Xr J  
    isnorm = strcmpi(nflag,'norm'); tzFgPeo$;  
    if ~isnorm B\z4o\am%  
        error('zernfun:normalization','Unrecognized normalization flag.') %`Q<_LTU  
    end Axtf,x+lH  
else 4lqowg0  
    isnorm = false; bWAVBF  
end (&x#VmDL  
R0v5mD$:G  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9G'Q3? z  
% Compute the Zernike Polynomials WV'FW)%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vgh_F8G!V  
k 8Swra?j  
% Determine the required powers of r: /o19/Pvwm  
% ----------------------------------- ~+GMn[h  
m_abs = abs(m); 9V%s1@K  
rpowers = []; ]zza/O;31(  
for j = 1:length(n) liUrw7,  
    rpowers = [rpowers m_abs(j):2:n(j)]; =O)dHY}  
end IaU  
rpowers = unique(rpowers); W]UGo,  
4D`T_l  
% Pre-compute the values of r raised to the required powers, 1o;+.]B  
% and compile them in a matrix: s C9j73 vf  
% ----------------------------- s9wc ZO  
if rpowers(1)==0 ^/3R/;?  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /l,V0+p  
    rpowern = cat(2,rpowern{:}); 'y [eH  
    rpowern = [ones(length_r,1) rpowern]; ^+JpI*,  
else 1r?<1vh:z  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (=H%VXQH  
    rpowern = cat(2,rpowern{:}); TvE M{  
end _U.D*f<3)  
pr8eRV!x  
% Compute the values of the polynomials: Ocq.<#||H  
% -------------------------------------- 99@uU[&IJ  
y = zeros(length_r,length(n)); 1@ )8E`u  
for j = 1:length(n) gp:,DC?(  
    s = 0:(n(j)-m_abs(j))/2; S;[*5g6a&x  
    pows = n(j):-2:m_abs(j); &k /uR;yw  
    for k = length(s):-1:1 y#:_K(A" k  
        p = (1-2*mod(s(k),2))* ... P"J(O<(1-:  
                   prod(2:(n(j)-s(k)))/              ... ysV0Ed  
                   prod(2:s(k))/                     ... %X Jv;|  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bf$YwoZov  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); ,~-"EQT  
        idx = (pows(k)==rpowers); ,BCtNt(  
        y(:,j) = y(:,j) + p*rpowern(:,idx); y#5xS  
    end ugEh}3  
     ^[no Gjy  
    if isnorm \`\& G-\  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $R3]y9`?  
    end IWvLt  
end 4=S.U`t7  
% END: Compute the Zernike Polynomials %e2,p&0G  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *p}b_A}D  
@U CGsw  
% Compute the Zernike functions: TT3GFP  
% ------------------------------ aA?Uf~ "t  
idx_pos = m>0; x2 *l5t  
idx_neg = m<0; HV-c DL  
)mw#MTv<[  
z = y; ct+ ;W  
if any(idx_pos) FS7 _ldD  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C?jk#T  
end Q H:k5V~  
if any(idx_neg) K' xN>qc  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xT7JGQ[|  
end InnjZ>$  
(3Hz=k_  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) ?.t naE  
%ZERNFUN2 Single-index Zernike functions on the unit circle. xj8 yQ Y1  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated HBHDu;u  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive mw2/jA7  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, q1!45a  
%   and THETA is a vector of angles.  R and THETA must have the same <d89eV+  
%   length.  The output Z is a matrix with one column for every P-value, )Il) H  
%   and one row for every (R,THETA) pair. 2P3,\L  
% 72uARF  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike RCM;k;@8V  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) O# n<`;W  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) cP#vzFB0>  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 cAFYEx/(  
%   for all p. /4Ud6gscf  
% AA=zDB<N  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 L@9@3?  
%   Zernike functions (order N<=7).  In some disciplines it is \ZNUt$\  
%   traditional to label the first 36 functions using a single mode zt&"K0X|  
%   number P instead of separate numbers for the order N and azimuthal X5[.X()M4  
%   frequency M. %?<Y&t  
% p;#@#>h  
%   Example: B^|^hZZ>  
% CMu/n]?c  
%       % Display the first 16 Zernike functions b&wyp@k  
%       x = -1:0.01:1; ^w|D^F=o  
%       [X,Y] = meshgrid(x,x); K=Q<G:+&V  
%       [theta,r] = cart2pol(X,Y); eKpWFP 0  
%       idx = r<=1; fHFy5j0H  
%       p = 0:15; ''p7!V?  
%       z = nan(size(X)); 0c{-$K}  
%       y = zernfun2(p,r(idx),theta(idx)); JWB3;,S  
%       figure('Units','normalized') dd?ZQ:n  
%       for k = 1:length(p) tJ 3Hg8;  
%           z(idx) = y(:,k); +"yt/9AO  
%           subplot(4,4,k) %imI.6   
%           pcolor(x,x,z), shading interp tBB\^xq:  
%           set(gca,'XTick',[],'YTick',[]) D MzDV_  
%           axis square {tKi8O^Rb  
%           title(['Z_{' num2str(p(k)) '}']) :,8eM{.Q  
%       end K^6fg,&  
% ]K<mkUpY  
%   See also ZERNPOL, ZERNFUN. n0 q$/Y.  
UngK9uB~  
%   Paul Fricker 11/13/2006 v)c[-:"z  
=w,cdU*  
1b` `y  
% Check and prepare the inputs: W{!Slf  
% ----------------------------- %^qf0d*  
if min(size(p))~=1 k$d+w][  
    error('zernfun2:Pvector','Input P must be vector.') 7eU|iDYo  
end (?ofL|Cg(  
vyhxS.[9  
if any(p)>35 .ng:Z7  
    error('zernfun2:P36', ... o0B3G  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... BpR#3CfW  
           '(P = 0 to 35).']) }"\jB  
end a? <Ar#)j  
yv+DM`0  
% Get the order and frequency corresonding to the function number: |+h8g@;Z  
% ---------------------------------------------------------------- m&I5~kD  
p = p(:); /4{.J=R}  
n = ceil((-3+sqrt(9+8*p))/2); n[c/L8j  
m = 2*p - n.*(n+2); uzO3_.4Y  
p}K\rpvJpu  
% Pass the inputs to the function ZERNFUN: s9 .nU  
% ---------------------------------------- 2E/yZ ~2s  
switch nargin *{%d{x}l  
    case 3 xA#'%|"  
        z = zernfun(n,m,r,theta); fs3jPHZJ#  
    case 4 1 GB  
        z = zernfun(n,m,r,theta,nflag); ;sZHE &+  
    otherwise <uL0 M`u3  
        error('zernfun2:nargin','Incorrect number of inputs.') >=!$(JgX  
end Q VJvuiUh  
eGW~4zU  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) >^V3Z{;  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. @uzzyp r>  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of KRN{Ath.  
%   order N and frequency M, evaluated at R.  N is a vector of ?:1)=I<A4  
%   positive integers (including 0), and M is a vector with the v>]^wH>/"  
%   same number of elements as N.  Each element k of M must be a W*D].|  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) (g 9G!I   
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is `ek On@T0  
%   a vector of numbers between 0 and 1.  The output Z is a matrix .|Bmg6g*  
%   with one column for every (N,M) pair, and one row for every S&w(H'4N  
%   element in R. /*2sg>e'QF  
% Xy'qgK?  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- e)x;3r"j  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ZPolE_P7  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to }5qjGD  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 dtT2h>h9  
%   for all [n,m]. q*kieqG  
% A[.5Bi  
%   The radial Zernike polynomials are the radial portion of the <1EmQ)B   
%   Zernike functions, which are an orthogonal basis on the unit H%:u9DlEK/  
%   circle.  The series representation of the radial Zernike B%e#u.'6  
%   polynomials is <0hJo=6a8  
% ;n-IpR#|  
%          (n-m)/2 c6NCy s  
%            __ 9v2(cpZ  
%    m      \       s                                          n-2s <fLk\ =  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6qgII~F'  
%    n      s=0 LN?b6s75U  
% 9+sOSz~ P  
%   The following table shows the first 12 polynomials. LpJ_HU7@lk  
% ,B<Tt|'  
%       n    m    Zernike polynomial    Normalization P!JRIw  
%       --------------------------------------------- `*1059   
%       0    0    1                        sqrt(2) "[LSDE"(  
%       1    1    r                           2 @$(/6]4p  
%       2    0    2*r^2 - 1                sqrt(6) 8'kA",P  
%       2    2    r^2                      sqrt(6) .7nr:P  
%       3    1    3*r^3 - 2*r              sqrt(8) "w\Iz]  
%       3    3    r^3                      sqrt(8) Je6=N3)  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )n[ oP%  
%       4    2    4*r^4 - 3*r^2            sqrt(10) 9N[vNg<n  
%       4    4    r^4                      sqrt(10) Z`l97$\  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) -pRyN]YD  
%       5    3    5*r^5 - 4*r^3            sqrt(12) ?q%)8 E  
%       5    5    r^5                      sqrt(12) s)e; c<(/  
%       --------------------------------------------- `aS9 o]t  
% (zFUC]  
%   Example: _faI*OY8  
% s1!_zf_  
%       % Display three example Zernike radial polynomials l_!.yV{  
%       r = 0:0.01:1; I]`>m3SJ  
%       n = [3 2 5]; z:aT5D  
%       m = [1 2 1]; .~4>5W"u  
%       z = zernpol(n,m,r); TXi$Q%0W  
%       figure R0y@#}JH  
%       plot(r,z) sg(L`P  
%       grid on fuQ|[tpvQG  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') gev7eGH<  
% j~G^J  
%   See also ZERNFUN, ZERNFUN2. E5lC'@Dcz  
vpY|S2w)Bp  
% A note on the algorithm. N1UE u,j  
% ------------------------ Q^v8n1  
% The radial Zernike polynomials are computed using the series WT!8.M;Kv  
% representation shown in the Help section above. For many special FeS6>/  
% functions, direct evaluation using the series representation can j=)%~@  
% produce poor numerical results (floating point errors), because i4.s_@2Y  
% the summation often involves computing small differences between #](k,% 2  
% large successive terms in the series. (In such cases, the functions }[PbA4l.g  
% are often evaluated using alternative methods such as recurrence gU/\'~HG  
% relations: see the Legendre functions, for example). For the Zernike >]=1~ sF  
% polynomials, however, this problem does not arise, because the fp9ksxb@m  
% polynomials are evaluated over the finite domain r = (0,1), and `^s(r>2  
% because the coefficients for a given polynomial are generally all Yuze9b\[  
% of similar magnitude. 9 il!w g?  
% =L<OTfVE  
% ZERNPOL has been written using a vectorized implementation: multiple <27B*C M  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] dH!k {3bL  
% values can be passed as inputs) for a vector of points R.  To achieve VVJhQbP  
% this vectorization most efficiently, the algorithm in ZERNPOL "Q+'lA[}  
% involves pre-determining all the powers p of R that are required to IqEY.2KN  
% compute the outputs, and then compiling the {R^p} into a single f9D7T|J?10  
% matrix.  This avoids any redundant computation of the R^p, and ?4q6>ipx  
% minimizes the sizes of certain intermediate variables. f+s'.z%  
% v>g1\y Iw  
%   Paul Fricker 11/13/2006 \XMl8G  
V:!fe+ Er  
itD1r?O{pV  
% Check and prepare the inputs: uGLVY%N  
% ----------------------------- Q-}oe Q  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nAd 4g|  
    error('zernpol:NMvectors','N and M must be vectors.') xzMa[D4(  
end KEY M@,'  
"6pjkEt4  
if length(n)~=length(m) 8.jd'yp*J  
    error('zernpol:NMlength','N and M must be the same length.') Dw[w%uz  
end V85a{OBm,8  
7"*- >mg  
n = n(:); K( 6=)  
m = m(:); G~4^`[elB  
length_n = length(n); Ko''G5+  
<2H 0m  
if any(mod(n-m,2))  IO>Cyo  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') kf-ZE$S4  
end EN J]  
P). @o.xl  
if any(m<0) p$[*GXR4  
    error('zernpol:Mpositive','All M must be positive.') iyH<!>a  
end Di-"y,[  
&R*d/~SU  
if any(m>n) }(M<sEK~  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %7 J  
end Fl*@@jQ8cV  
mL6/NSSz  
if any( r>1 | r<0 ) 7Zu!s]t  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') \3)%p('  
end CF42KNq  
ItOVx!"@9  
if ~any(size(r)==1) `i{o8l  
    error('zernpol:Rvector','R must be a vector.') Mh_jlgE'd#  
end E/s3@-/  
f+I*aBQ  
r = r(:); Ujj2A^  
length_r = length(r); T_Y6AII  
7* `ldao~  
if nargin==4 UBC[5E$  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); wEDU*}~  
    if ~isnorm B0 R[f  
        error('zernpol:normalization','Unrecognized normalization flag.') j./bVmd.  
    end M $e~Rlw  
else *Z/B\nb  
    isnorm = false; ojIh;e  
end "lmiGR*u  
gWWy!H  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yhlk#>I  
% Compute the Zernike Polynomials <:&w/NjbI  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mZM5aTQ3  
 dc5B#  
% Determine the required powers of r: _t;w n7p  
% -----------------------------------  WHpbQQX  
rpowers = []; +[F9Q,bH@b  
for j = 1:length(n) RNt3az  
    rpowers = [rpowers m(j):2:n(j)]; jgGn"}  
end +>:X4A *  
rpowers = unique(rpowers); 7rr5$,Mv  
5SKu\ H\  
% Pre-compute the values of r raised to the required powers, H"&N<"hw  
% and compile them in a matrix: ~O^_J)  
% ----------------------------- Bo~wD|E2  
if rpowers(1)==0 NKI&n]EO  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P)}:lTe  
    rpowern = cat(2,rpowern{:}); { aB_t%`w  
    rpowern = [ones(length_r,1) rpowern]; t(_XB|AKm  
else 'Uc|[l]  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f,uxoAS  
    rpowern = cat(2,rpowern{:}); {< wq}~  
end Hv IN'  
0<Pe~i_=  
% Compute the values of the polynomials: i2!{.*.  
% -------------------------------------- $ jn tT(V  
z = zeros(length_r,length_n); )1i)I?m  
for j = 1:length_n |LjCtm)@+  
    s = 0:(n(j)-m(j))/2; y1AS^'  
    pows = n(j):-2:m(j); WW_X:N~~e\  
    for k = length(s):-1:1 nh8h?&q|  
        p = (1-2*mod(s(k),2))* ... ]O\6.>H  
                   prod(2:(n(j)-s(k)))/          ... TfxKvol'  
                   prod(2:s(k))/                 ... "vJADQ4F  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... vLC&C-f  
                   prod(2:((n(j)+m(j))/2-s(k))); [NFAdE  
        idx = (pows(k)==rpowers); Y}[r`}={  
        z(:,j) = z(:,j) + p*rpowern(:,idx); " DFg"  
    end [n^___7  
     cCeD3CuRA%  
    if isnorm }i[jJb`bY  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); F 4h EfO3  
    end q<UqGj7#   
end ^:q(ksssY  
kOjq LA  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  |%tR#!&[:g  
hcBfau;r  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /0r2v/0  
Q~]R#S  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计