niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *QM~O'WhD function z = zernfun(n,m,r,theta,nflag) iRG?# " %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Pw@olG'Ah % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {dPgf % and angular frequency M, evaluated at positions (R,THETA) on the IfDx@ ?OB % unit circle. N is a vector of positive integers (including 0), and %;z((3F % M is a vector with the same number of elements as N. Each element $R8w+ Id % k of M must be a positive integer, with possible values M(k) = -N(k) '#O_}|ZN % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DhI>p0* T % and THETA is a vector of angles. R and THETA must have the same e=/&(Y % length. The output Z is a matrix with one column for every (N,M) d0er^ ~ % pair, and one row for every (R,THETA) pair. &[?CTZ % lS{r=y_0. % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike WV kR56 % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W( *V2<$o % with delta(m,0) the Kronecker delta, is chosen so that the integral ED![^= % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;n#%G^!H % and theta=0 to theta=2*pi) is unity. For the non-normalized NB8& % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U; xF#e % H5wb_yBQ+ % The Zernike functions are an orthogonal basis on the unit circle. g?/XZ5$a5 % They are used in disciplines such as astronomy, optics, and d-!<C7O} % optometry to describe functions on a circular domain. ~krS#\ % Edt}",s7 % The following table lists the first 15 Zernike functions. WXUkuO % 3"
Vd==oK~ % n m Zernike function Normalization Z/ bB
h % -------------------------------------------------- ^nDal':* % 0 0 1 1 >w'$1tc?+F % 1 1 r * cos(theta) 2 :.IN?X % 1 -1 r * sin(theta) 2 18!VO4u\I % 2 -2 r^2 * cos(2*theta) sqrt(6) g@nk.aRw % 2 0 (2*r^2 - 1) sqrt(3) cqL(^R. % 2 2 r^2 * sin(2*theta) sqrt(6) V7<eQ0;m
% 3 -3 r^3 * cos(3*theta) sqrt(8) L`K;IV%; % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9R]](g# % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {7#03 k % 3 3 r^3 * sin(3*theta) sqrt(8) Enj_tJs % 4 -4 r^4 * cos(4*theta) sqrt(10) Lar r}o= % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yFeeG3n3 % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .LE+/n % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |>utWT]S % 4 4 r^4 * sin(4*theta) sqrt(10) jXcNAl % -------------------------------------------------- 6v47 QW|' % 8M93cyX % Example 1: :EB,{|m % A@ VaaX % % Display the Zernike function Z(n=5,m=1) !C`20,U % x = -1:0.01:1; 1xC`ZhjcD % [X,Y] = meshgrid(x,x); p {C9`wi) % [theta,r] = cart2pol(X,Y); BI/y<6#rR % idx = r<=1; 0zV 4`y % z = nan(size(X)); JD&U}dJ % z(idx) = zernfun(5,1,r(idx),theta(idx)); U"x~Jb3]O % figure 3H'*?|Y(# % pcolor(x,x,z), shading interp oc;VIK)g]c % axis square, colorbar 41'EA\V % title('Zernike function Z_5^1(r,\theta)') Xu%d,T$G % xMsGs % Example 2: n_;S2KM % <ge}9pU)o^ % % Display the first 10 Zernike functions 'a_s%{BJXg % x = -1:0.01:1; 5G oK"F0i % [X,Y] = meshgrid(x,x); =LqL@5Xr % [theta,r] = cart2pol(X,Y); `vX4!@Tw % idx = r<=1; w .l|G,%= % z = nan(size(X)); z5ZKks % n = [0 1 1 2 2 2 3 3 3 3]; "uS7PplyO % m = [0 -1 1 -2 0 2 -3 -1 1 3]; -$m@*L % Nplot = [4 10 12 16 18 20 22 24 26 28]; U%,;N\:_ % y = zernfun(n,m,r(idx),theta(idx)); 9b%|^.B % figure('Units','normalized') '2xcce# % for k = 1:10 Kt6C43]7 % z(idx) = y(:,k); w Oj88J) % subplot(4,7,Nplot(k)) R9q0,yQW % pcolor(x,x,z), shading interp QSv^l-< % set(gca,'XTick',[],'YTick',[]) h-,?a_ % axis square p4y6R4kyT % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R@OSqEnr % end oL)lyUVT % i#tbdx# % See also ZERNPOL, ZERNFUN2. 9D%qXU wn{]#n=|l % Paul Fricker 11/13/2006 )FV6, m}rh|x/?
wFp~ % Check and prepare the inputs: A3<^ U % ----------------------------- xSdN5RN if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "2%y~jrDN error('zernfun:NMvectors','N and M must be vectors.') ,RR;VKj end i]LU4y%' tI"wVr if length(n)~=length(m) sC!1B6: error('zernfun:NMlength','N and M must be the same length.') ZMP?'0h= end 0
-!?W vwm|I7/w n = n(:); a^%8QJW m = m(:); sE^ns\&QP= if any(mod(n-m,2)) >c}:
error('zernfun:NMmultiplesof2', ... )o86lH"z 'All N and M must differ by multiples of 2 (including 0).') 4u@yJ?U end 0W;q!H[G mgk64}K [n if any(m>n) Q-M
rH error('zernfun:MlessthanN', ... ~o}moE/
;O 'Each M must be less than or equal to its corresponding N.') Bjurmo end @QvfN>T :yd=No@ if any( r>1 | r<0 ) N5[_a/ error('zernfun:Rlessthan1','All R must be between 0 and 1.') qJ#L) end H4P\hOK7r [6Uud iw if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #k"1wSx16 error('zernfun:RTHvector','R and THETA must be vectors.') ;:v]NZtc end d,Hf-zJ%~ *=($r%) r = r(:); P&qy.0 theta = theta(:); :7HVBH length_r = length(r); l=Lmr if length_r~=length(theta) ,\.YJD>z error('zernfun:RTHlength', ... MsN2A6|33 'The number of R- and THETA-values must be equal.') u.ULS3`C/X end 'DaNR`9 |NphG| % Check normalization: 4<=eK7;XR % -------------------- h$#4ebp if nargin==5 && ischar(nflag) z{ Zimr isnorm = strcmpi(nflag,'norm'); IqR[&T)lj if ~isnorm (hD X4;4 error('zernfun:normalization','Unrecognized normalization flag.') |THkS@Br end g4BwKENM else cOj +}Hz58 isnorm = false; jk WBw.( end vZ1D3ytfG K284R=j -& %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HbJadOK % Compute the Zernike Polynomials jS5t?0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YQfZiz}Fv <E(-QJ % Determine the required powers of r: .q'FSEkMJ % ----------------------------------- <9MQ m_abs = abs(m); 1*eWvYo1 rpowers = []; Ed ?Yk* 4 for j = 1:length(n) B4M'Er{v rpowers = [rpowers m_abs(j):2:n(j)]; lN]X2 4t end e2VL/>y` rpowers = unique(rpowers); 5u=U-- Z)Xq!]~/g % Pre-compute the values of r raised to the required powers, G1n>@Y'j'' % and compile them in a matrix: #!F8n` C- % ----------------------------- 'KW+Rr~tZn if rpowers(1)==0 )Lv6vnT> rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (vYf?+Kb rpowern = cat(2,rpowern{:}); :L+zUlsf rpowern = [ones(length_r,1) rpowern]; L52z else
_ jM6ej< rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0$dY;,Q . rpowern = cat(2,rpowern{:}); 0^tJX1L end h?O%XnD BM}a?nnoc % Compute the values of the polynomials: @rDv
(W % -------------------------------------- #IciNCIrG y = zeros(length_r,length(n)); h: (l+jr for j = 1:length(n) F^[Rwzv>c s = 0:(n(j)-m_abs(j))/2; m$e@<~To pows = n(j):-2:m_abs(j); Y{\2wU!Isn for k = length(s):-1:1 m~\m"zJ4 p = (1-2*mod(s(k),2))* ... "Mu$3w prod(2:(n(j)-s(k)))/ ... :r[-7
[/ prod(2:s(k))/ ... \}_7^)S; prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (5\d[||9g prod(2:((n(j)+m_abs(j))/2-s(k))); n ;fTx idx = (pows(k)==rpowers); Vf* B1Zb y(:,j) = y(:,j) + p*rpowern(:,idx); _O'rZ5}& end UM;bVf? 7.=s1~p if isnorm *xX0]{49q y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <Ucfd
G&Lp end SOY#, Zu end 2T?1X{g % END: Compute the Zernike Polynomials !haXO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oHGf | H5rNLfw
' % Compute the Zernike functions: [75e\=wK % ------------------------------ %1l80Z idx_pos = m>0; %y~]3XWik idx_neg = m<0; 'g,
x}6 n!,TBCNX z = y; 9!<3qx/ if any(idx_pos) s~'C'B? z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "U~@o4u; end B~?Q. <M if any(idx_neg) =Qq^=3@h z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ty8!"-V1 end G~j<I/)" X Ow^"=Oa[ % EOF zernfun
|
|