niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NKKOA function z = zernfun(n,m,r,theta,nflag) ;wxt< %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ko>_@]Jb % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -c?wEqa~2 % and angular frequency M, evaluated at positions (R,THETA) on the wg.fo:Q % unit circle. N is a vector of positive integers (including 0), and 49$4 % M is a vector with the same number of elements as N. Each element IpXhb[UZ? % k of M must be a positive integer, with possible values M(k) = -N(k) o)=VPUe % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Z+W&C@Uw % and THETA is a vector of angles. R and THETA must have the same @<=#i % length. The output Z is a matrix with one column for every (N,M) aF"Z!HD % pair, and one row for every (R,THETA) pair. cB}2(`z9
B % BZc- % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wT=hO+ % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7YjucPH# % with delta(m,0) the Kronecker delta, is chosen so that the integral \=V[ba:q % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, P$>kBW53 % and theta=0 to theta=2*pi) is unity. For the non-normalized BQ:Kx _
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4Z9 3g{ % ] *VF Ws % The Zernike functions are an orthogonal basis on the unit circle. I=yj % They are used in disciplines such as astronomy, optics, and 'sBXH EZA] % optometry to describe functions on a circular domain. U(=9&c@] % }C"*ACjF % The following table lists the first 15 Zernike functions. %,cFX[D/) % Pq>[q?>? % n m Zernike function Normalization Z*>/@ J} % -------------------------------------------------- pQ:PwyU % 0 0 1 1 ^!F5Cz 48 % 1 1 r * cos(theta) 2 cgXF|'yI&l % 1 -1 r * sin(theta) 2 /B\-DP3K % 2 -2 r^2 * cos(2*theta) sqrt(6) {4aY}=
-Q* % 2 0 (2*r^2 - 1) sqrt(3) ]"g >> N % 2 2 r^2 * sin(2*theta) sqrt(6) &E
riskI % 3 -3 r^3 * cos(3*theta) sqrt(8) },aWCvJL % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @dCPa7:>& % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3t{leuO' % 3 3 r^3 * sin(3*theta) sqrt(8) tZCe?n] % 4 -4 r^4 * cos(4*theta) sqrt(10) G=5t5[KC % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xyjVdD\ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #]DZrD&q % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {3(.c, q@ % 4 4 r^4 * sin(4*theta) sqrt(10) 9r+O!kF( % -------------------------------------------------- h4\ 6h % HU[nN* % Example 1: dX@A%6#? % H..ZvGu % % Display the Zernike function Z(n=5,m=1) %s@S|<
W % x = -1:0.01:1; EN)A" % [X,Y] = meshgrid(x,x); lJzy)ne % [theta,r] = cart2pol(X,Y); SslY]d] % idx = r<=1; Wejwj/EU% % z = nan(size(X)); Y0B1xL@ % z(idx) = zernfun(5,1,r(idx),theta(idx)); 4<Sa,~4 % figure 0yC`9g)( % pcolor(x,x,z), shading interp
2ZG1n# % axis square, colorbar :-\ yy % title('Zernike function Z_5^1(r,\theta)') ivX37,B\bS % @fH&(@ % Example 2: Dp*$GQ % XCIa2Syo % % Display the first 10 Zernike functions )ozcr^ % x = -1:0.01:1; _7#tgZyv % [X,Y] = meshgrid(x,x); IbJ[Og^Qyu % [theta,r] = cart2pol(X,Y); 3[=`uO0\7 % idx = r<=1; yLz,V} % z = nan(size(X)); K>cz63}S % n = [0 1 1 2 2 2 3 3 3 3]; h [IYA1/y % m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?5yH'9zE % Nplot = [4 10 12 16 18 20 22 24 26 28]; T6I%FXm} % y = zernfun(n,m,r(idx),theta(idx)); .?0>5-SfY % figure('Units','normalized') l/ rZcf8z % for k = 1:10 O GFE* % z(idx) = y(:,k); lgonR % subplot(4,7,Nplot(k)) 3K#mF7)a % pcolor(x,x,z), shading interp zzfn0g % set(gca,'XTick',[],'YTick',[]) %]<RRH.w % axis square 5{ FM#@ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uPFHlT % end (eRKR2% q % wVp4c?s % See also ZERNPOL, ZERNFUN2. !rXcGj(k )t,{YGY# % Paul Fricker 11/13/2006 :G`L3E&1s >I d!I NYjS % Check and prepare the inputs: nQ642i%RQ % ----------------------------- dm2CA0 if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *vRI)>wU error('zernfun:NMvectors','N and M must be vectors.') Jh\:X<q end kPO6gdwq$ fQQsb 5=i if length(n)~=length(m) X7H'Uk9: error('zernfun:NMlength','N and M must be the same length.') |0L=8~M(j end t$K@%yU2 AbF(MK=i n = n(:); z+k=|RMau m = m(:); Ns2,hQFc if any(mod(n-m,2)) CQSpPQA error('zernfun:NMmultiplesof2', ... MyH[v E^b 'All N and M must differ by multiples of 2 (including 0).') ut$,?k!M end Z cm<Fw >I4p9y(u if any(m>n) _r\$NgJIM error('zernfun:MlessthanN', ... D1X4|Q*SK 'Each M must be less than or equal to its corresponding N.') $Ns,ts(ng end [7gYd+s ym|NT0_0 if any( r>1 | r<0 ) +}^|dkc error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5{13V*< end D0/DI .hX0c"f]b if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #ya\Jdx error('zernfun:RTHvector','R and THETA must be vectors.') s.y q}Q end u^Nxvx3l0 pWs\.::B r = r(:); JiFA]M`^Q theta = theta(:); b mOqeUgB length_r = length(r);
76-jMcGi if length_r~=length(theta) Vi|7%!j< error('zernfun:RTHlength', ... S]&8St 'The number of R- and THETA-values must be equal.') b!0DH[XKV end %MJL5 O' +"d%2' % Check normalization: VL+N:wb> % -------------------- 90/vJN if nargin==5 && ischar(nflag) "z^(dF| isnorm = strcmpi(nflag,'norm'); ~|r~NO
7[ if ~isnorm }zFf0.82 error('zernfun:normalization','Unrecognized normalization flag.') ZFS7{: end B.$PhmCG else }I]j&\ isnorm = false; VF)uu[
f9 end TUh&d5a9H DY9fF4[9a %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d0(Cn}m"c % Compute the Zernike Polynomials fb\DiKsW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6M ^IwE ^P`NMSw % Determine the required powers of r: ?Z q_9T7 % ----------------------------------- vUNisVA m_abs = abs(m); pDu{e>S|: rpowers = []; L#D9@V'z for j = 1:length(n) s%~L4Wmcq rpowers = [rpowers m_abs(j):2:n(j)]; Q48+O?&
end q-3]jHChh rpowers = unique(rpowers); /XcDYMKgh c=6ahX}d % Pre-compute the values of r raised to the required powers, t|}O.u-&;~ % and compile them in a matrix: '\`6ot8 % ----------------------------- C+w__gO&r if rpowers(1)==0 (;aB!(_ rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OL3UgepF rpowern = cat(2,rpowern{:}); | h}B{D rpowern = [ones(length_r,1) rpowern]; Sp:l;SGd else m0|K#^ rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]q{
PDZ
rpowern = cat(2,rpowern{:}); $>*Yhz ` end 2i\Q@h s5l3V2k % Compute the values of the polynomials: Sk:2+inU % -------------------------------------- dpwD8Q<
U y = zeros(length_r,length(n)); XS?gn.o\ for j = 1:length(n) |; $Bb866/ s = 0:(n(j)-m_abs(j))/2; fXO_g pows = n(j):-2:m_abs(j); mEFw|M{ for k = length(s):-1:1 e+'%!w"B p = (1-2*mod(s(k),2))* ... xCWz\-; prod(2:(n(j)-s(k)))/ ... hSB?@I4s<\ prod(2:s(k))/ ... 8eluO ?p prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =m7H)z)i*J prod(2:((n(j)+m_abs(j))/2-s(k))); B5ea(j idx = (pows(k)==rpowers); $X\va?( y(:,j) = y(:,j) + p*rpowern(:,idx); ]H ~Y7\N-v end ju|]Qlek IG< H"tQ if isnorm qI%&ay"/ y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); R(k}y,eh.` end }`xdWY end @w\I qr
% END: Compute the Zernike Polynomials -/ +#5.`1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0,_b) h}Rx_d % Compute the Zernike functions: A%u_&a}
% ------------------------------ {$d <1y^ idx_pos = m>0; VWx]1\ idx_neg = m<0; f'X9HU{Cz a 7#J2 r z = y; mT@nn, if any(idx_pos) `&!k!FZY* z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bFY~oa%C end
UMU2^$\iS if any(idx_neg) ?A?F.n` z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !E2W\chi end X^s2BW ?Q0I'RC % EOF zernfun
|
|