首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 *;d)'7<  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! ;X6y.1N~  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NKKO A  
function z = zernfun(n,m,r,theta,nflag) ;wxt<   
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ko>_@]Jb  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -c?wEqa~2  
%   and angular frequency M, evaluated at positions (R,THETA) on the wg.fo:Q  
%   unit circle.  N is a vector of positive integers (including 0), and 49$4  
%   M is a vector with the same number of elements as N.  Each element IpXhb[UZ?  
%   k of M must be a positive integer, with possible values M(k) = -N(k) o)=VPUe  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Z+W&C@Uw  
%   and THETA is a vector of angles.  R and THETA must have the same @<=#i  
%   length.  The output Z is a matrix with one column for every (N,M) aF"Z!HD  
%   pair, and one row for every (R,THETA) pair. cB}2(`z9 B  
%  BZc-  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wT= hO+  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7YjucPH#  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral \=V[ba:q  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, P$>kBW53  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized BQ:Kx_   
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4Z9 3 g {  
% ] *VF Ws  
%   The Zernike functions are an orthogonal basis on the unit circle. I=y j  
%   They are used in disciplines such as astronomy, optics, and 'sBXH EZA]  
%   optometry to describe functions on a circular domain. U(=9&c@]  
% }C"*ACjF   
%   The following table lists the first 15 Zernike functions. %,cFX[D/)  
% Pq>[q?>?  
%       n    m    Zernike function           Normalization Z*>/@J}  
%       -------------------------------------------------- pQ:PwyU  
%       0    0    1                                 1 ^!F5Cz 48  
%       1    1    r * cos(theta)                    2 cgXF|'yI&l  
%       1   -1    r * sin(theta)                    2 /B\-DP3K  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) {4aY}= -Q*  
%       2    0    (2*r^2 - 1)                    sqrt(3) ]"g >>N  
%       2    2    r^2 * sin(2*theta)             sqrt(6) &E riskI  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) },aWCvJL  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @dCPa7:>&  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3t{leuO'  
%       3    3    r^3 * sin(3*theta)             sqrt(8) tZCe?n]  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) G=5t5[KC  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xyjV dD\  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #]DZrD&q  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {3(.c, q@  
%       4    4    r^4 * sin(4*theta)             sqrt(10) 9r+O!kF(  
%       -------------------------------------------------- h4\6h  
% HU[nN*  
%   Example 1: dX@A%6#?  
% H..ZvGu  
%       % Display the Zernike function Z(n=5,m=1) %s@S|< W  
%       x = -1:0.01:1; EN)A"  
%       [X,Y] = meshgrid(x,x); lJzy)ne  
%       [theta,r] = cart2pol(X,Y); SslY]d]  
%       idx = r<=1; Wejwj/EU%  
%       z = nan(size(X)); Y0B1xL@  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4<Sa,~4  
%       figure 0yC`9g)(  
%       pcolor(x,x,z), shading interp 2ZG1n#  
%       axis square, colorbar :-\ yy  
%       title('Zernike function Z_5^1(r,\theta)') ivX37,B\bS  
% @fH&(@  
%   Example 2: Dp*$GQ  
% XCIa2Syo  
%       % Display the first 10 Zernike functions )ozcr^  
%       x = -1:0.01:1;  _7#tgZyv  
%       [X,Y] = meshgrid(x,x); IbJ[Og^Qyu  
%       [theta,r] = cart2pol(X,Y); 3[=`uO0\7  
%       idx = r<=1; yLz,V}  
%       z = nan(size(X)); K>cz63}S  
%       n = [0  1  1  2  2  2  3  3  3  3]; h [IYA1/y  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?5yH'9zE  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; T6I%FXm}  
%       y = zernfun(n,m,r(idx),theta(idx)); .?0>5-SfY  
%       figure('Units','normalized') l/ rZcf8z  
%       for k = 1:10 O GFE*  
%           z(idx) = y(:,k); lg onR  
%           subplot(4,7,Nplot(k)) 3K#mF7)a  
%           pcolor(x,x,z), shading interp zzfn0g  
%           set(gca,'XTick',[],'YTick',[]) %]<RRH.w  
%           axis square 5{FM#@  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uPFHlT  
%       end (eRKR2% q  
% wVp4c?s  
%   See also ZERNPOL, ZERNFUN2. !rXcGj(k  
)t,{YGY#  
%   Paul Fricker 11/13/2006 :G`L3E&1s  
>I d!I  
NYjS  
% Check and prepare the inputs: nQ642i%RQ  
% ----------------------------- dm2CA0   
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *vRI)>wU  
    error('zernfun:NMvectors','N and M must be vectors.') Jh\: X<q  
end kPO6gdwq$  
fQQsb 5=i  
if length(n)~=length(m) X7H'Uk9:  
    error('zernfun:NMlength','N and M must be the same length.') |0L=8~M(j  
end t$K@%yU2  
AbF(MK=i  
n = n(:); z+k=|RMau  
m = m(:); Ns2,hQFc  
if any(mod(n-m,2)) CQSpPQA  
    error('zernfun:NMmultiplesof2', ... MyH[vE^b  
          'All N and M must differ by multiples of 2 (including 0).') ut$,?k!M  
end Z cm<Fw  
>I4p9y(u  
if any(m>n) _r\$NgJIM  
    error('zernfun:MlessthanN', ... D1X4|Q*SK  
          'Each M must be less than or equal to its corresponding N.') $Ns,ts(ng  
end [7gYd+s  
ym|NT0_0  
if any( r>1 | r<0 ) +}^|dkc  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5{13 V*<  
end D0 /DI  
.hX0c"f]b  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #ya\Jdx   
    error('zernfun:RTHvector','R and THETA must be vectors.') s.yq}Q  
end u^Nxvx3l0  
pWs\.::B  
r = r(:); JiFA]M`^Q  
theta = theta(:); bmOqeUgB  
length_r = length(r); 76-jMcGi  
if length_r~=length(theta) Vi|7%!j<  
    error('zernfun:RTHlength', ... S]&8St  
          'The number of R- and THETA-values must be equal.') b!0DH[XKV  
end %MJL5  
O' +"d%2'  
% Check normalization: VL+N: wb>  
% -------------------- 90/vJN  
if nargin==5 && ischar(nflag) "z^(dF|  
    isnorm = strcmpi(nflag,'norm'); ~|r~NO 7[  
    if ~isnorm }zFf0.82  
        error('zernfun:normalization','Unrecognized normalization flag.') ZFS7{:  
    end B.$PhmCG  
else }I]j&\  
    isnorm = false; VF)uu[ f9  
end TUh&d5a9H  
DY9fF4[9a  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d0(Cn}m"c  
% Compute the Zernike Polynomials  fb\DiKsW  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6M ^IwE  
^P`NMSw  
% Determine the required powers of r: ?Z q_9T7  
% ----------------------------------- vUNisVA  
m_abs = abs(m); pDu{e>S|:  
rpowers = []; L#D9@V'z  
for j = 1:length(n) s%~L4Wmcq  
    rpowers = [rpowers m_abs(j):2:n(j)]; Q48+O?&  
end q-3]jHChh  
rpowers = unique(rpowers); /XcDYMKgh  
c=6ahX}d  
% Pre-compute the values of r raised to the required powers, t|}O.u-&;~  
% and compile them in a matrix: '\`6ot8  
% ----------------------------- C+w__gO&r  
if rpowers(1)==0 (;a B!(_  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OL3UgepF  
    rpowern = cat(2,rpowern{:}); |h}B{D  
    rpowern = [ones(length_r,1) rpowern]; Sp:l;SGd  
else m0|K#^  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]q{ PDZ   
    rpowern = cat(2,rpowern{:}); $>*Yhz `  
end 2i\Q@h  
s5l3V2k  
% Compute the values of the polynomials: Sk:2+inU  
% -------------------------------------- dpwD8Q< U  
y = zeros(length_r,length(n)); XS?gn.o\  
for j = 1:length(n) |; $Bb866/  
    s = 0:(n(j)-m_abs(j))/2; fXO_g  
    pows = n(j):-2:m_abs(j); mEFw|M{  
    for k = length(s):-1:1 e+'%!w"B  
        p = (1-2*mod(s(k),2))* ... xCWz\-;  
                   prod(2:(n(j)-s(k)))/              ... hSB?@I4s<\  
                   prod(2:s(k))/                     ... 8eluO ?p  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =m7H)z)i*J  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); B5ea(j  
        idx = (pows(k)==rpowers); $X \va?(  
        y(:,j) = y(:,j) + p*rpowern(:,idx); ]H ~Y7\N-v  
    end ju|]Qlek  
     IG< H"tQ  
    if isnorm qI%&ay"/  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); R(k}y,eh.`  
    end }`xdWY  
end @w\I qr  
% END: Compute the Zernike Polynomials -/ +#5.`1  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0,_b)  
h}Rx_d  
% Compute the Zernike functions: A%u_&a}  
% ------------------------------ {$d<1y^  
idx_pos = m>0; VWx]1\  
idx_neg = m<0; f'X9HU{Cz  
a 7#J2r  
z = y; mT @ nn,  
if any(idx_pos) `&!k!FZY*  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bFY~oa%C  
end UMU2^$\iS  
if any(idx_neg) ?A?F.n`  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !E2W\chi  
end X^s2BW  
?Q0I'RC  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) I|9 SiZ0  
%ZERNFUN2 Single-index Zernike functions on the unit circle. 8R/dA<Ww  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ",yc0 2<  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive XJ1=m   
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, o]ePP,  
%   and THETA is a vector of angles.  R and THETA must have the same >6<q8{*  
%   length.  The output Z is a matrix with one column for every P-value, M f~}/h  
%   and one row for every (R,THETA) pair. ;Hmp f0$  
% kLj$@E`4  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z//VlB  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) =Yz'D|=t  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Jrxz'9qRG  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q?):oJ  
%   for all p. $pyOn2}  
% >R\lqLILb,  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 k D5!}+y  
%   Zernike functions (order N<=7).  In some disciplines it is &V7M}@  
%   traditional to label the first 36 functions using a single mode -' g*^  
%   number P instead of separate numbers for the order N and azimuthal *.#oxcll  
%   frequency M. ?t](a:IX  
% bN$r k|  
%   Example: =WIJ>#Go<  
% t]aea*B  
%       % Display the first 16 Zernike functions Lfog {Vzs  
%       x = -1:0.01:1; A A^{B  
%       [X,Y] = meshgrid(x,x); \C,p WW  
%       [theta,r] = cart2pol(X,Y); D^ Jk@<*  
%       idx = r<=1; ^r6!l.  
%       p = 0:15; En{`@JsM  
%       z = nan(size(X)); ntFT>g{B  
%       y = zernfun2(p,r(idx),theta(idx)); vS\Nd1~?  
%       figure('Units','normalized') M{g%cR0  
%       for k = 1:length(p) +N`ua  
%           z(idx) = y(:,k); N@ \&1I`c$  
%           subplot(4,4,k) qz?mh4Oh  
%           pcolor(x,x,z), shading interp -m *Sq  
%           set(gca,'XTick',[],'YTick',[]) jhu07HX_  
%           axis square 7x);x/#8Z  
%           title(['Z_{' num2str(p(k)) '}']) )R`xR,H  
%       end GZI`jS"lU  
% ,#MCn  
%   See also ZERNPOL, ZERNFUN. a=cvCf  
oND@:>QBF  
%   Paul Fricker 11/13/2006 S*o[ZA   
wLc4Dm*V  
7f rTTSZ  
% Check and prepare the inputs: f+8wl!M+6  
% ----------------------------- .*m>\>Gsgw  
if min(size(p))~=1 *na?n2Yzt  
    error('zernfun2:Pvector','Input P must be vector.') {9UEq0  
end 8Nu=^[qwQM  
#@<9S{F  
if any(p)>35 {|I;YDA  
    error('zernfun2:P36', ... )W/;=K  
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ck?YI]q|  
           '(P = 0 to 35).']) [!!Q,S"  
end ,eTU/Q>{,&  
/c uLc^(X  
% Get the order and frequency corresonding to the function number: wgCa58H76  
% ---------------------------------------------------------------- J8mdoVt  
p = p(:); : q#Xq;Wp  
n = ceil((-3+sqrt(9+8*p))/2); ;L']e"G  
m = 2*p - n.*(n+2); u~A6bK*  
L 4!{h|  
% Pass the inputs to the function ZERNFUN: v`M3eh@$A  
% ---------------------------------------- z`:lcF{V  
switch nargin RzWXKBI\E]  
    case 3 Y "/]|'p  
        z = zernfun(n,m,r,theta); o!)3?  
    case 4 ^]TVo\,N  
        z = zernfun(n,m,r,theta,nflag); 8F'x=lIO  
    otherwise I:mr}mv=i  
        error('zernfun2:nargin','Incorrect number of inputs.') \otWd  
end ~]QHk?[wc  
Hv2De0W  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) :Of^xj>A  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. +F^^c2E  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0tXS3+@n =  
%   order N and frequency M, evaluated at R.  N is a vector of m6w].-D8  
%   positive integers (including 0), and M is a vector with the [n :<8ho  
%   same number of elements as N.  Each element k of M must be a ME*LH r,  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) g"}%2~Urf  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is HhvdqvIEG  
%   a vector of numbers between 0 and 1.  The output Z is a matrix MRdduPrM%$  
%   with one column for every (N,M) pair, and one row for every 2.l:O2<  
%   element in R. @0/+_2MH-  
% z*a:L}$  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- _no*k?o *  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^zQ/mo,Z  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to h-` }L=  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *2,VyY  
%   for all [n,m]. ]GW]dM  
% ivN&HAxI@  
%   The radial Zernike polynomials are the radial portion of the t:'Mh9h7u  
%   Zernike functions, which are an orthogonal basis on the unit pe 1R(|H  
%   circle.  The series representation of the radial Zernike ]SLP}Jwy  
%   polynomials is QC}CRkp  
% R8a3 1&  
%          (n-m)/2 ~ v|>xqWV  
%            __ woK&q7Vn  
%    m      \       s                                          n-2s nH[yJGZYSA  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Al} B34.uh  
%    n      s=0 <h:x=  
% kY-N>E:  
%   The following table shows the first 12 polynomials. GkQpELO:  
% ]H+8rY%+  
%       n    m    Zernike polynomial    Normalization %z,m B$LY  
%       --------------------------------------------- `xqr{lhL  
%       0    0    1                        sqrt(2) %[ Z \S0C  
%       1    1    r                           2 0tT(W^ho g  
%       2    0    2*r^2 - 1                sqrt(6) h7lDHIQf  
%       2    2    r^2                      sqrt(6) hG12ZZD  
%       3    1    3*r^3 - 2*r              sqrt(8) 4R1<nZ"e~  
%       3    3    r^3                      sqrt(8) w"Gm;B4  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) YUtC.TR1  
%       4    2    4*r^4 - 3*r^2            sqrt(10) $QLcH;+7t  
%       4    4    r^4                      sqrt(10) Ch <[l8;K  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) w"-Lc4t+  
%       5    3    5*r^5 - 4*r^3            sqrt(12) b*c*r dTx  
%       5    5    r^5                      sqrt(12) 128EPK  
%       --------------------------------------------- -g*4(w  
% W{6|tx)  
%   Example: Vt:~q{9*k  
% (X\@t-8  
%       % Display three example Zernike radial polynomials N"Zt47(  
%       r = 0:0.01:1; &8Cu#^3  
%       n = [3 2 5]; k@RDvn  
%       m = [1 2 1]; v3~?;f,l  
%       z = zernpol(n,m,r); f!Y?S  
%       figure Yg%I?  
%       plot(r,z) r!_-"~`7E  
%       grid on I9_RlAd  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /Kql>$I  
% i&bA2p3+d  
%   See also ZERNFUN, ZERNFUN2. +hg3I8q:  
I_} SB|  
% A note on the algorithm. %Nlt H/I  
% ------------------------ 6-N?mSQU  
% The radial Zernike polynomials are computed using the series [1g8*j~L  
% representation shown in the Help section above. For many special `u3EU*~W  
% functions, direct evaluation using the series representation can #rMlI3;  
% produce poor numerical results (floating point errors), because `VA"vwz  
% the summation often involves computing small differences between il4^zj82  
% large successive terms in the series. (In such cases, the functions JjtNP)We  
% are often evaluated using alternative methods such as recurrence h7G"G"  
% relations: see the Legendre functions, for example). For the Zernike *+Ek0M  
% polynomials, however, this problem does not arise, because the <wN}X#M  
% polynomials are evaluated over the finite domain r = (0,1), and AYqX |  
% because the coefficients for a given polynomial are generally all %9KldcQ}~  
% of similar magnitude. FH?U(-  
% DE}K~}sbd  
% ZERNPOL has been written using a vectorized implementation: multiple Xix L  R  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] x nsLf?>]  
% values can be passed as inputs) for a vector of points R.  To achieve sBj(Qd  
% this vectorization most efficiently, the algorithm in ZERNPOL k:t ]s_`<  
% involves pre-determining all the powers p of R that are required to n9W(bG o  
% compute the outputs, and then compiling the {R^p} into a single V,lOt4b  
% matrix.  This avoids any redundant computation of the R^p, and ~7*.6YnI  
% minimizes the sizes of certain intermediate variables. (y=C_wvqZ  
% n\Z!ff/  
%   Paul Fricker 11/13/2006 !Q2d(H>  
] {RDVA=]  
-; s|  
% Check and prepare the inputs: >*~L28Fyn  
% ----------------------------- SD"FErJ  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?8npG]L)  
    error('zernpol:NMvectors','N and M must be vectors.') PCHu #5j_a  
end \FQRNj?'_  
o |{5M|nD  
if length(n)~=length(m) %aG5F}S2~  
    error('zernpol:NMlength','N and M must be the same length.') E:UW#S%A f  
end [_R~%Yh+'E  
\(?rQg@U  
n = n(:); 'nzg6^I7g  
m = m(:); h]IxXP?h[  
length_n = length(n); Sq>dt[7  
sJB;3"~  
if any(mod(n-m,2)) dP9qSwTa  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') >:74%D0UF  
end 6KXtcXQ  
F+YZE[h%  
if any(m<0) z`.<U{5  
    error('zernpol:Mpositive','All M must be positive.') Zi*2nv '  
end f(>p=%=O  
[<lHCQXJ/  
if any(m>n) l5S aT,%  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Q- cFtu-w  
end j$M h + 5  
%0S3V[4I  
if any( r>1 | r<0 ) !a{^=#qq&I  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') tqz3zIQ  
end :(/~:^!  
qzYwt]GNS  
if ~any(size(r)==1) H[6:_**?o  
    error('zernpol:Rvector','R must be a vector.') [>jbhV'  
end t|w_i-&b,  
Vh'P&W?[  
r = r(:); u(z$fG:g  
length_r = length(r); C8J[Up  
f}o\*|k_|  
if nargin==4 !EvAB+`jLI  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); u0JB\)(-/h  
    if ~isnorm T:27r8"Rh  
        error('zernpol:normalization','Unrecognized normalization flag.') \o z#l'z  
    end Y>dF5&(kb  
else |UkR'Ma  
    isnorm = false; iN bIp"W  
end &y\prip  
9 &$y}Y  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R[zpD%CI  
% Compute the Zernike Polynomials xs{3pkTYD  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !S$:*5=&  
xsIY7Ss U  
% Determine the required powers of r: G"r1+#  
% ----------------------------------- DBo%fYst  
rpowers = []; h=W:^@G  
for j = 1:length(n) +Zb;Vn4  
    rpowers = [rpowers m(j):2:n(j)]; w;%.2VJ  
end 6|gCuT4  
rpowers = unique(rpowers); 6LvW?z(J  
k9<;woOBO  
% Pre-compute the values of r raised to the required powers, .N,bIQnj  
% and compile them in a matrix: AuvkecuIh  
% ----------------------------- (o 5s"b  
if rpowers(1)==0 Uf1!qP/H?  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~k"=4j9  
    rpowern = cat(2,rpowern{:}); ^7 w+l @  
    rpowern = [ones(length_r,1) rpowern]; RFi S@.7  
else $[Sc0dzJ  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xipU8'ac/  
    rpowern = cat(2,rpowern{:}); &xU[E!2H%  
end &yct!YOB2  
*^\Ef4Lh  
% Compute the values of the polynomials: kDEXN  
% -------------------------------------- @bi}W`  
z = zeros(length_r,length_n); evya7^,F  
for j = 1:length_n $POu\TO  
    s = 0:(n(j)-m(j))/2; & DS/v)]  
    pows = n(j):-2:m(j); h}>"j%I  
    for k = length(s):-1:1 XD!W: uvb  
        p = (1-2*mod(s(k),2))* ... 1rNzJ;'  
                   prod(2:(n(j)-s(k)))/          ... y8d]9sX{  
                   prod(2:s(k))/                 ... ^-TE([bW  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... /74QMx?  
                   prod(2:((n(j)+m(j))/2-s(k))); ;(b9#b.  
        idx = (pows(k)==rpowers); 1gE [v  
        z(:,j) = z(:,j) + p*rpowern(:,idx); s,"]aew  
    end B |5]Jm]  
     2A']y D  
    if isnorm o$wEEz*4  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u]g%@3Pn  
    end ](Xb _xMf  
end 2+RUTOv/d  
V)3KS-  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :Oy%a'w   
"N;`1ce  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 MO[2~`,Q!  
,1hxw<sNR  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计