| niuhelen |
2011-03-12 23:00 |
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .@3 function z = zernfun(n,m,r,theta,nflag) P,|%7'? Y %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JfJLJ(} % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xb2xl.2x! % and angular frequency M, evaluated at positions (R,THETA) on the TJHab;7F % unit circle. N is a vector of positive integers (including 0), and UC!?. % M is a vector with the same number of elements as N. Each element <}@*i % k of M must be a positive integer, with possible values M(k) = -N(k) oV)#s! % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |#_ F % and THETA is a vector of angles. R and THETA must have the same U.fLuKt % length. The output Z is a matrix with one column for every (N,M) _</>`P[ % pair, and one row for every (R,THETA) pair. \i*QKV< % x:7"/H| % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }=dUASL % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y
,Iv<Hg % with delta(m,0) the Kronecker delta, is chosen so that the integral MY8[)<q" % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;i)NP X % and theta=0 to theta=2*pi) is unity. For the non-normalized b9F:X % polynomials, max(Znm(r=1,theta))=1 for all [n,m]. DLigpid % FN$sST % The Zernike functions are an orthogonal basis on the unit circle. Ihd{@6m % They are used in disciplines such as astronomy, optics, and JE a~avyJ % optometry to describe functions on a circular domain. 6aw1 % `b11,lg % The following table lists the first 15 Zernike functions. Jv,*rQH % 9+"R}Nxv^ % n m Zernike function Normalization
}T)0:DF1, % -------------------------------------------------- cYC@@? % 0 0 1 1 6njwrqo % 1 1 r * cos(theta) 2 F}f/cG<X % 1 -1 r * sin(theta) 2 Y<]A5cm % 2 -2 r^2 * cos(2*theta) sqrt(6) X6T*?t3!9[ % 2 0 (2*r^2 - 1) sqrt(3) R{3?`x!fY % 2 2 r^2 * sin(2*theta) sqrt(6) n$*e( % 3 -3 r^3 * cos(3*theta) sqrt(8) #OQT@uF! % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) KW&vX%i(. % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kBRy(?Mft& % 3 3 r^3 * sin(3*theta) sqrt(8) qg`8f? % 4 -4 r^4 * cos(4*theta) sqrt(10) Rk8oshS+2 % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >" &&,~ % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `W*b?e|H1 % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i$z).S?1 % 4 4 r^4 * sin(4*theta) sqrt(10) Fk-}2_=vi % -------------------------------------------------- JZUf-0q % fF|m~#y % Example 1: 1v?|n8 % MYlPG1X=? % % Display the Zernike function Z(n=5,m=1) 3d>3f3D8; % x = -1:0.01:1; <hv {,1p-r % [X,Y] = meshgrid(x,x); )HL[_WfY % [theta,r] = cart2pol(X,Y); 0dKv%X#\ % idx = r<=1; `{B<|W$= % z = nan(size(X)); vJ a?5Jr % z(idx) = zernfun(5,1,r(idx),theta(idx)); [b?[LK}. % figure rIhe}1 % pcolor(x,x,z), shading interp R #\o*Ta % axis square, colorbar &~
.n}h& % title('Zernike function Z_5^1(r,\theta)') &x#3N=c# % yQ/E0>Uj! % Example 2: dBG5IOD % 's>./Pf % % Display the first 10 Zernike functions }R\;htmc; % x = -1:0.01:1; "c2{n, % [X,Y] = meshgrid(x,x); h%[1V % [theta,r] = cart2pol(X,Y); d,:3;:CR % idx = r<=1; =*\(Y(0 % z = nan(size(X)); "~nUwW|=1 % n = [0 1 1 2 2 2 3 3 3 3]; gc"A Tc % m = [0 -1 1 -2 0 2 -3 -1 1 3]; Y
*?hA' % Nplot = [4 10 12 16 18 20 22 24 26 28]; f.{/PL % y = zernfun(n,m,r(idx),theta(idx)); -SeHz.`N % figure('Units','normalized') '0tNo.8K % for k = 1:10 8_h:_7e % z(idx) = y(:,k); Y2&hf6BE % subplot(4,7,Nplot(k)) FC&841F % pcolor(x,x,z), shading interp /8Xd2- % set(gca,'XTick',[],'YTick',[]) rT/4w#_3 % axis square R GC DC*\ % title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zYZ^/7) % end C<"b99\2` % !`S61~gE % See also ZERNPOL, ZERNFUN2. z.6I6IfL\L 0J5IO|1M % Paul Fricker 11/13/2006 Q?WgGE4> JM> 4m)h# UkzLUok]U % Check and prepare the inputs: J=7<dEm& % ----------------------------- 227 Z6#CF! if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^oH!FN`;{ error('zernfun:NMvectors','N and M must be vectors.') k.K;7GZC end US2Tdmy@05 daN#6e4Z+; if length(n)~=length(m) biy[h3b error('zernfun:NMlength','N and M must be the same length.') dePI&z: end -5.~POO Ou,Eu05jt' n = n(:); aX,ux9# m = m(:); _ H$^m#h if any(mod(n-m,2)) yaW HGre error('zernfun:NMmultiplesof2', ... >X0c:pPu 'All N and M must differ by multiples of 2 (including 0).') b_%W*Q end p({)ZU3 O9jpt>:kZ if any(m>n) b]XDfe error('zernfun:MlessthanN', ... +x:-W0C: 'Each M must be less than or equal to its corresponding N.') ns;nle|m end jSMs<ox ;&?l1Vu if any( r>1 | r<0 ) w/Ej>OS error('zernfun:Rlessthan1','All R must be between 0 and 1.') O({vHqN> end wML5T+ u[yUUYe if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
{H$m1=S error('zernfun:RTHvector','R and THETA must be vectors.') w7Y>B`wm? end Ey* *j o])2_e5 r = r(:); +'fdAc:5', theta = theta(:); +pMjm&CF length_r = length(r); Xh*p\ $ if length_r~=length(theta) Kk t9M\ error('zernfun:RTHlength', ... W$_@9W(Bl 'The number of R- and THETA-values must be equal.') i[x;k;m2q end '.&z y# {Kh u'c % Check normalization: ngC|BLT%h % -------------------- *q/oS8vavd if nargin==5 && ischar(nflag) h=Xr J isnorm = strcmpi(nflag,'norm'); tzFgPeo$; if ~isnorm B \z4o\am% error('zernfun:normalization','Unrecognized normalization flag.') %`Q<_LTU end Axtf,x+lH else 4lqowg0 isnorm = false; bWAVBF end (&x#VmDL R0v5mD$:G %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9G'Q3?
z % Compute the Zernike Polynomials WV'FW)% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vgh_F8G!V k 8Swra?j % Determine the required powers of r: /o19/Pvwm % ----------------------------------- ~+GMn[h m_abs = abs(m); 9V%s1@K rpowers = []; ]zza/O;31( for j = 1:length(n) liUrw7, rpowers = [rpowers m_abs(j):2:n(j)]; =O)dHY} end IaU rpowers = unique(rpowers); W]UGo, 4D`T_l % Pre-compute the values of r raised to the required powers, 1o;+.]B % and compile them in a matrix: s C9j73vf % ----------------------------- s9wcZO if rpowers(1)==0 ^/3R/;? rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /l,V0+p rpowern = cat(2,rpowern{:}); 'y
[eH rpowern = [ones(length_r,1) rpowern]; ^+JpI*, else 1r?<1vh:z rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (= H%VXQH rpowern = cat(2,rpowern{:}); TvE M{ end _U.D*f<3) pr8eRV!x % Compute the values of the polynomials: Ocq.<#||H % -------------------------------------- 99@uU[&IJ y = zeros(length_r,length(n)); 1@)8E`u for j = 1:length(n) gp:,DC?( s = 0:(n(j)-m_abs(j))/2; S;[*5g6a&x pows = n(j):-2:m_abs(j); &k
/uR;yw for k = length(s):-1:1 y#:_K(A" k p = (1-2*mod(s(k),2))* ... P"J(O<(1-: prod(2:(n(j)-s(k)))/ ... ysV0Ed prod(2:s(k))/ ... %X Jv;| prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bf$YwoZov prod(2:((n(j)+m_abs(j))/2-s(k))); ,~-"EQT idx = (pows(k)==rpowers); ,BCtNt( y(:,j) = y(:,j) + p*rpowern(:,idx);
y#5xS end ugEh}3 ^[noGjy if isnorm \`\& G-\ y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $R3]y9`? end IWvLt end 4=S.U`t7 % END: Compute the Zernike Polynomials %e2,p&0G %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *p}b_A}D @UCGsw % Compute the Zernike functions: TT3GFP % ------------------------------ aA?Uf~ "t idx_pos = m>0; x2*l5t idx_neg = m<0; HV-c
DL )mw#MTv<[ z = y; ct+ ;W if any(idx_pos) FS7 _ldD z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C?jk#T end QH:k5V~ if any(idx_neg) K' xN>qc z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xT7JGQ[| end InnjZ>$ (3Hz=k_ % EOF zernfun
|
|