首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> ZEMAX,OpticStudio -> ansys分析后面型数据如何进行zernike多项式拟合? [点此返回论坛查看本帖完整版本] [打印本页]

niuhelen 2011-03-12 18:40

ansys分析后面型数据如何进行zernike多项式拟合?

小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 5efxEt>U  
就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式的系数,然后用zemax各阶得到像差!谢谢啦! +>7$4`Nb2  
phility 2011-03-12 22:31
可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
phility 2011-03-12 22:41
泽尼克多项式的前9项对应象差的
niuhelen 2011-03-12 23:00
非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *QM~O'WhD  
function z = zernfun(n,m,r,theta,nflag) iRG?# "  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Pw@olG'Ah  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {dPgf  
%   and angular frequency M, evaluated at positions (R,THETA) on the IfDx@?OB  
%   unit circle.  N is a vector of positive integers (including 0), and %;z((3F  
%   M is a vector with the same number of elements as N.  Each element $R8w+ Id  
%   k of M must be a positive integer, with possible values M(k) = -N(k) '#O_}|ZN  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DhI>p0* T  
%   and THETA is a vector of angles.  R and THETA must have the same e=/&(Y  
%   length.  The output Z is a matrix with one column for every (N,M) d0 er^ ~  
%   pair, and one row for every (R,THETA) pair. &[?CTZ  
% lS{r=y_0.  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W VkR56  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W( *V2<$o  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral ED![^=  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;n#%G^!H  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized NB8&   
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U;xF#e  
% H5wb_yBQ+  
%   The Zernike functions are an orthogonal basis on the unit circle. g?/XZ5$a5  
%   They are used in disciplines such as astronomy, optics, and d-!<C7O}  
%   optometry to describe functions on a circular domain. ~krS#\  
% Edt}",s7  
%   The following table lists the first 15 Zernike functions. WXUkuO  
% 3" Vd==oK~  
%       n    m    Zernike function           Normalization Z/ bB h  
%       -------------------------------------------------- ^nDal':*  
%       0    0    1                                 1 >w'$1tc?+F  
%       1    1    r * cos(theta)                    2 :.IN?X  
%       1   -1    r * sin(theta)                    2 18!VO4u\I  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) g@nk.aRw  
%       2    0    (2*r^2 - 1)                    sqrt(3) cqL(^R.  
%       2    2    r^2 * sin(2*theta)             sqrt(6) V 7<eQ0;m  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) L`K;IV%;  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9R]](g#  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {7#03k  
%       3    3    r^3 * sin(3*theta)             sqrt(8) Enj_tJs  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) Lar r}o=  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yFeeG3 n3  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .LE+/n  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |>utWT]S  
%       4    4    r^4 * sin(4*theta)             sqrt(10) jXcNAl  
%       -------------------------------------------------- 6v47 QW|'  
% 8M93cyX  
%   Example 1: :EB,{|m  
% A@ VaaX  
%       % Display the Zernike function Z(n=5,m=1) !C`20,U  
%       x = -1:0.01:1; 1xC`ZhjcD  
%       [X,Y] = meshgrid(x,x); p{C9`wi)  
%       [theta,r] = cart2pol(X,Y); BI/y<6#rR  
%       idx = r<=1; 0zV 4`y  
%       z = nan(size(X)); JD&U}dJ  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); U"x~Jb3]O  
%       figure 3H'*?|Y(#  
%       pcolor(x,x,z), shading interp oc;VIK)g]c  
%       axis square, colorbar 41 'EA \V  
%       title('Zernike function Z_5^1(r,\theta)') Xu%d,T$G  
% xMsGs  
%   Example 2: n_;S2KM  
% <ge}9pU)o^  
%       % Display the first 10 Zernike functions 'a_s%{BJXg  
%       x = -1:0.01:1; 5G oK"F0i  
%       [X,Y] = meshgrid(x,x); =LqL@5Xr  
%       [theta,r] = cart2pol(X,Y); `vX4! @Tw  
%       idx = r<=1; w .l|G,%=  
%       z = nan(size(X)); z5ZKks   
%       n = [0  1  1  2  2  2  3  3  3  3]; "uS7PplyO  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -$m@*L  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; U%,;N\:_  
%       y = zernfun(n,m,r(idx),theta(idx)); 9b%|^ .B  
%       figure('Units','normalized') '2xcce#  
%       for k = 1:10 Kt6C43]7  
%           z(idx) = y(:,k); w Oj88J)  
%           subplot(4,7,Nplot(k)) R9q0,yQW  
%           pcolor(x,x,z), shading interp QSv^l-<  
%           set(gca,'XTick',[],'YTick',[]) h-,?a_  
%           axis square p4y6R4kyT  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R @OSqEnr  
%       end oL)lyUVT  
% i#tbdx#  
%   See also ZERNPOL, ZERNFUN2. 9D%qXU  
wn{]#n=|l  
%   Paul Fricker 11/13/2006 )FV6,  
m}rh|x/?  
wFp~  
% Check and prepare the inputs: A3<^ U  
% ----------------------------- xSdN5RN  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "2%y~jrDN  
    error('zernfun:NMvectors','N and M must be vectors.') ,RR;VKj  
end i]LU4y %'  
tI"wVr  
if length(n)~=length(m) sC!1B6:  
    error('zernfun:NMlength','N and M must be the same length.') ZMP?'0h=  
end 0 -!?W  
vwm|I7/w  
n = n(:); a^%8QJW  
m = m(:); sE^ns\&QP=  
if any(mod(n-m,2)) >c}:   
    error('zernfun:NMmultiplesof2', ... )o86lH"z  
          'All N and M must differ by multiples of 2 (including 0).') 4u@yJ?U  
end 0W;q!H[G  
mgk64}K[n  
if any(m>n) Q -M rH   
    error('zernfun:MlessthanN', ... ~o}moE/ ;O  
          'Each M must be less than or equal to its corresponding N.') Bjurmo  
end @QvfN>T  
:yd=No@  
if any( r>1 | r<0 ) N5[_a/  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') qJ#L)  
end H4P\hOK7r  
[6Uudiw  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #k"1wSx16  
    error('zernfun:RTHvector','R and THETA must be vectors.') ; :v]NZtc  
end d,Hf-zJ%~  
*=($r%)  
r = r(:); P&qy.0  
theta = theta(:); :7HVBH  
length_r = length(r); l=Lmr  
if length_r~=length(theta) ,\.YJD>z  
    error('zernfun:RTHlength', ... MsN2A6|33  
          'The number of R- and THETA-values must be equal.') u.ULS3`C/X  
end 'DaNR`9  
|N phG|  
% Check normalization: 4<=eK7;XR  
% -------------------- h$#4ebp  
if nargin==5 && ischar(nflag) z{ Zimr  
    isnorm = strcmpi(nflag,'norm'); IqR[&T)lj  
    if ~isnorm (hD X4;4  
        error('zernfun:normalization','Unrecognized normalization flag.') |THkS@Br  
    end g4BwKENM  
else cOj +}Hz58  
    isnorm = false; jk WBw.(  
end vZ1D3ytfG  
K284R=j -&  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HbJadOK  
% Compute the Zernike Polynomials jS5t?0  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YQfZiz}Fv  
<E(-QJ  
% Determine the required powers of r: .q'FSEkMJ  
% ----------------------------------- <9MQ  
m_abs = abs(m); 1*eWvYo1  
rpowers = []; Ed ?Yk* 4  
for j = 1:length(n) B4M'Er{v  
    rpowers = [rpowers m_abs(j):2:n(j)]; lN]X2 4t  
end e2VL/>y`  
rpowers = unique(rpowers); 5u=U--  
Z)Xq!]~/g  
% Pre-compute the values of r raised to the required powers, G1n>@Y'j''  
% and compile them in a matrix: #!F8n`C-  
% ----------------------------- 'KW+Rr~tZn  
if rpowers(1)==0 )Lv6vnT>  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (vYf?+Kb  
    rpowern = cat(2,rpowern{:});  :L+zUlsf  
    rpowern = [ones(length_r,1) rpowern]; L 52z  
else _ jM6ej<  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0$dY;,Q.  
    rpowern = cat(2,rpowern{:}); 0^tJX1L  
end h?O%XnD  
BM}a?nnoc  
% Compute the values of the polynomials: @rDv (W  
% -------------------------------------- #IciNCIrG  
y = zeros(length_r,length(n)); h: (l+jr  
for j = 1:length(n) F^[Rwzv>c  
    s = 0:(n(j)-m_abs(j))/2; m$e@<~To  
    pows = n(j):-2:m_abs(j); Y{\2wU!Isn  
    for k = length(s):-1:1 m~\m"zJ4  
        p = (1-2*mod(s(k),2))* ... "Mu $3 w  
                   prod(2:(n(j)-s(k)))/              ... :r[-7 [/  
                   prod(2:s(k))/                     ... \}_7^)S;  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (5\d[||9g  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); n ;fTx  
        idx = (pows(k)==rpowers); Vf* B1Zb  
        y(:,j) = y(:,j) + p*rpowern(:,idx); _O'rZ5}&  
    end UM;bVf?  
     7.=s1~p  
    if isnorm *xX0]{49q  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <Ucfd G&Lp  
    end SOY#, Zu  
end 2T?1X{g  
% END: Compute the Zernike Polynomials !haXO  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oHGf |  
H5rNLfw '  
% Compute the Zernike functions: [75e\=wK  
% ------------------------------ %1l80Z  
idx_pos = m>0; %y~]3XWik  
idx_neg = m<0; 'g, x}6  
n!,TBCNX  
z = y; 9!<3qx/  
if any(idx_pos) s~'C'B?  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "U~@o4u;  
end B~?Q. <M  
if any(idx_neg) =Qq^=3@h  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ty8!"-V1  
end G~j<I/)"  
X Ow^"=Oa[  
% EOF zernfun
niuhelen 2011-03-12 23:01
function z = zernfun2(p,r,theta,nflag) g#&##f  
%ZERNFUN2 Single-index Zernike functions on the unit circle. eNskuG|1  
%   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated @_Oe`j^  
%   at positions (R,THETA) on the unit circle.  P is a vector of positive ZX}"  
%   integers between 0 and 35, R is a vector of numbers between 0 and 1, `)P_X4e]`  
%   and THETA is a vector of angles.  R and THETA must have the same C\h<02  
%   length.  The output Z is a matrix with one column for every P-value, 7l EwQ  
%   and one row for every (R,THETA) pair. +`[Sv%v&L  
% n#,l&Bx  
%   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike WHT%m|yn  
%   functions, defined such that the integral of (r * [Zp(r,theta)]^2) @=1``z#  
%   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) IH}L1i A)  
%   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 e4LNnJU\|  
%   for all p. 9D21e(7X  
% ?V)6`St#C  
%   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Z}f_\d'  
%   Zernike functions (order N<=7).  In some disciplines it is "|rqt.f2[  
%   traditional to label the first 36 functions using a single mode M*uG`Eo&  
%   number P instead of separate numbers for the order N and azimuthal (o\~2e:  
%   frequency M. 1=.?KAXR  
% EC/R|\d?Un  
%   Example: B.jYU  
% }5U f`pM8  
%       % Display the first 16 Zernike functions lY`<-`{I_  
%       x = -1:0.01:1; >AJ|F)  
%       [X,Y] = meshgrid(x,x); aoS1Yt'@  
%       [theta,r] = cart2pol(X,Y); Tkf !Y?  
%       idx = r<=1; w (1a{m?ht  
%       p = 0:15; nt6"}vO  
%       z = nan(size(X)); \9^@,kfP  
%       y = zernfun2(p,r(idx),theta(idx)); o5uwa{v  
%       figure('Units','normalized') yW 3h_08  
%       for k = 1:length(p) a$m?if=  
%           z(idx) = y(:,k); 7j8_O@_  
%           subplot(4,4,k) ,d#4Ib  
%           pcolor(x,x,z), shading interp rv:O|wZ  
%           set(gca,'XTick',[],'YTick',[]) rf@81Ds  
%           axis square 9`AQsZ2  
%           title(['Z_{' num2str(p(k)) '}']) Tx_ LH"8  
%       end |1o]d$3m  
% ?$Pj[O^hl  
%   See also ZERNPOL, ZERNFUN. ,")7uMZaF\  
~WSC6Bh@9  
%   Paul Fricker 11/13/2006 RiklwR#~r/  
uvL|T48  
jk@]d5  
% Check and prepare the inputs: N<x5:f#+  
% ----------------------------- 5> UgBA  
if min(size(p))~=1 {+;8dtZ)x  
    error('zernfun2:Pvector','Input P must be vector.') eR CGr?e4  
end sp%7iNs  
N@}U;x}  
if any(p)>35 pyKMi /)bL  
    error('zernfun2:P36', ... ; OsN^   
          ['ZERNFUN2 only computes the first 36 Zernike functions ' ... #p]O n87>  
           '(P = 0 to 35).']) MEu-lM7v  
end pmC@ fB  
X^ovP'c2  
% Get the order and frequency corresonding to the function number: bpkn[K"(  
% ---------------------------------------------------------------- ;(V=disU/  
p = p(:); MmX42;Pw  
n = ceil((-3+sqrt(9+8*p))/2); ,#crtX  
m = 2*p - n.*(n+2);  6?6 u  
}V 1sY^C  
% Pass the inputs to the function ZERNFUN: tQ/U'Ap&  
% ---------------------------------------- >,DR{A2hSB  
switch nargin ;j$84o{  
    case 3 7Qo*u;fr  
        z = zernfun(n,m,r,theta); 6c2fqAF>i  
    case 4 r )T`?y  
        z = zernfun(n,m,r,theta,nflag); 7l?=$q>k"  
    otherwise O&}07(  
        error('zernfun2:nargin','Incorrect number of inputs.') eN/Jb;W  
end WYq, i}S  
X3nwA#If1  
% EOF zernfun2
niuhelen 2011-03-12 23:01
function z = zernpol(n,m,r,nflag) giI9-C  
%ZERNPOL Radial Zernike polynomials of order N and frequency M. oL<^m?-u  
%   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }+SnY8A=KZ  
%   order N and frequency M, evaluated at R.  N is a vector of Q 5Ln'La$  
%   positive integers (including 0), and M is a vector with the d@C93VYp  
%   same number of elements as N.  Each element k of M must be a 5^%FEZ&Sp  
%   positive integer, with possible values M(k) = 0,2,4,...,N(k) r> NgJf,  
%   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,#s}nJ4  
%   a vector of numbers between 0 and 1.  The output Z is a matrix <}|+2f233+  
%   with one column for every (N,M) pair, and one row for every k+_pj k  
%   element in R. 6}[W%S]8  
% lx%<oC+M  
%   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- X.g1 312~  
%   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is SC'fT!  
%   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to '#^ONnSTn  
%   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 YrA#NTB_o  
%   for all [n,m]. )bqO}_B  
% ao Y "uT+  
%   The radial Zernike polynomials are the radial portion of the !MoGdI-<r[  
%   Zernike functions, which are an orthogonal basis on the unit ]5B5J  
%   circle.  The series representation of the radial Zernike *V5R[   
%   polynomials is e;!si>N  
% Hj LY\.S  
%          (n-m)/2 vTN$SgzfCU  
%            __ $GEY*uIOa  
%    m      \       s                                          n-2s Kh}#At^C8e  
%   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ^lf{IM-Y  
%    n      s=0 (m25ZhW  
% < OCy  
%   The following table shows the first 12 polynomials. k#&d`?X  
% g&) XaF[!  
%       n    m    Zernike polynomial    Normalization {+!m]-s  
%       --------------------------------------------- &V:iy  
%       0    0    1                        sqrt(2) GBVw6+(c  
%       1    1    r                           2 9])dLL0  
%       2    0    2*r^2 - 1                sqrt(6) l`4hWs\I  
%       2    2    r^2                      sqrt(6) p<: bP w  
%       3    1    3*r^3 - 2*r              sqrt(8) 3{O^q/R  
%       3    3    r^3                      sqrt(8) >/9f>d?w^  
%       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Tq,Kel  
%       4    2    4*r^4 - 3*r^2            sqrt(10) JmjqA Dex  
%       4    4    r^4                      sqrt(10) }4b 4<Sm_h  
%       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) tN&4t xB  
%       5    3    5*r^5 - 4*r^3            sqrt(12) UJ* D  
%       5    5    r^5                      sqrt(12) Nr8#/H2f  
%       --------------------------------------------- 50q(8F-N  
% @8{-B;   
%   Example: T)? : q  
% xkV(E!O  
%       % Display three example Zernike radial polynomials _FR_6*C)5  
%       r = 0:0.01:1; w+($= n~  
%       n = [3 2 5]; cNOtfn6?F  
%       m = [1 2 1]; d 5jZ?  
%       z = zernpol(n,m,r); ]wb^5H  
%       figure 7vZtEwC)n  
%       plot(r,z) pZHx  
%       grid on PgHe;^?j  
%       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5,dKha  
% _[F(8Q x"  
%   See also ZERNFUN, ZERNFUN2. F/p/&9  
e7tp4M9!%  
% A note on the algorithm. Pa)'xfQ$Y6  
% ------------------------ `st3iTLZY  
% The radial Zernike polynomials are computed using the series &FrUj>i  
% representation shown in the Help section above. For many special 0MpZdJ  
% functions, direct evaluation using the series representation can (:er~Y}  
% produce poor numerical results (floating point errors), because , L_u X  
% the summation often involves computing small differences between Z=R 6?jU*n  
% large successive terms in the series. (In such cases, the functions qkXnpv  
% are often evaluated using alternative methods such as recurrence pSa pF)1>  
% relations: see the Legendre functions, for example). For the Zernike 2P, %}Ms  
% polynomials, however, this problem does not arise, because the O}s Mqh  
% polynomials are evaluated over the finite domain r = (0,1), and !#y_vz9  
% because the coefficients for a given polynomial are generally all ,F%2'W  
% of similar magnitude. ?i{/iH~Sf  
% 4yK{(!&i+  
% ZERNPOL has been written using a vectorized implementation: multiple (jmF7XfU  
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] :MaP58dhh  
% values can be passed as inputs) for a vector of points R.  To achieve 1VKu3  
% this vectorization most efficiently, the algorithm in ZERNPOL {"PIS&]tR  
% involves pre-determining all the powers p of R that are required to XgI;2Be+&a  
% compute the outputs, and then compiling the {R^p} into a single po9f[/s'+o  
% matrix.  This avoids any redundant computation of the R^p, and 1S+lHG92I  
% minimizes the sizes of certain intermediate variables. ]A&pX AM  
% 8/vGA=  
%   Paul Fricker 11/13/2006 z{H=;"+rh  
J5!-<oJ/  
tp<v  
% Check and prepare the inputs: 3p1U,B}  
% ----------------------------- <EKTFHJ!  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #fx>{ vzH  
    error('zernpol:NMvectors','N and M must be vectors.') +R8G*2  
end {h*)|J  
NR3h|'eC  
if length(n)~=length(m) b|-}?@&7&q  
    error('zernpol:NMlength','N and M must be the same length.') KwHlpW*  
end =28ZSo^  
:u]QEZ@@  
n = n(:); 4iDqd  
m = m(:); eC3 ~|G_O  
length_n = length(n); &#zx/$  
Hp>_:2O8s  
if any(mod(n-m,2)) f"z;'  
    error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') mY[*(a  
end ) 7C+hQe  
XL7||9,(h  
if any(m<0) ]f~!Qk!I7r  
    error('zernpol:Mpositive','All M must be positive.') "+M0lGTB  
end .uinv  
k4PXH  
if any(m>n) I5@8=rFk  
    error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *C);IdhK%y  
end /_X`i[  
Q?V+ 0J  
if any( r>1 | r<0 ) Zi?:< H}  
    error('zernpol:Rlessthan1','All R must be between 0 and 1.') ^z`d 2it  
end 8VtRRtl  
99tUw'w  
if ~any(size(r)==1) WMa`! Q  
    error('zernpol:Rvector','R must be a vector.') V.%LA. 8  
end )Ma/] eZ^I  
~/qBOeU3  
r = r(:); |xF!3GGms  
length_r = length(r); v@4vitbG9  
U[?f@.&  
if nargin==4 w^9< I]  
    isnorm = ischar(nflag) & strcmpi(nflag,'norm'); naM~>N  
    if ~isnorm n[B[hAT  
        error('zernpol:normalization','Unrecognized normalization flag.') Qz89=#W  
    end ~Ajst!Y7=  
else Zoy)2E{  
    isnorm = false; {+]tx46$  
end g^}C/~b[  
9 p,O>I  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D|amKW7  
% Compute the Zernike Polynomials v>HOz\F  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +|x{?%.O  
qRR%aJ/  
% Determine the required powers of r: mo+!79&  
% ----------------------------------- `v-O 4Pk  
rpowers = []; d}%-vm} 0  
for j = 1:length(n) 5KfrkZ  
    rpowers = [rpowers m(j):2:n(j)]; J$PlI  
end XS #u/!  
rpowers = unique(rpowers); FQ> kTm`d  
x]@z.Yj  
% Pre-compute the values of r raised to the required powers, XjdHH.) S  
% and compile them in a matrix: u0]u"T&N!  
% ----------------------------- W/3sJc9  
if rpowers(1)==0 Nw*F1*v`  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cU-A1W  
    rpowern = cat(2,rpowern{:}); 6#AEVRJKU@  
    rpowern = [ones(length_r,1) rpowern]; U{j4FlB  
else 4AKr.a0q  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); as'yYn8  
    rpowern = cat(2,rpowern{:}); 6O,:I  
end %% /8B  
TtF+~K  
% Compute the values of the polynomials: V1,/qd_  
% -------------------------------------- 0b/@QgJ  
z = zeros(length_r,length_n); LF @_|o I  
for j = 1:length_n Alo L+eN@  
    s = 0:(n(j)-m(j))/2; :b*7TJ\grN  
    pows = n(j):-2:m(j); s7HKgj  
    for k = length(s):-1:1 yXoNfsv  
        p = (1-2*mod(s(k),2))* ... :p,|6~b$  
                   prod(2:(n(j)-s(k)))/          ... L N Fe7<y  
                   prod(2:s(k))/                 ... _5H~1G%q  
                   prod(2:((n(j)-m(j))/2-s(k)))/ ... E p;i],}  
                   prod(2:((n(j)+m(j))/2-s(k))); wJ pb$;  
        idx = (pows(k)==rpowers); C #iZAR  
        z(:,j) = z(:,j) + p*rpowern(:,idx); qH5nw}]  
    end z HvE_ -  
     FZO&r60$E  
    if isnorm G<=I\T'g;  
        z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p"c6d'qe  
    end &A*E)T#>#  
end <F(S_w62  
8'L:D  
% EOF zernpol
niuhelen 2011-03-12 23:03
这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
li_xin_feng 2012-09-28 10:52
我也正在找啊
guapiqlh 2014-03-04 11:35
我也一直想了解这个多项式的应用,还没用过呢
phoenixzqy 2014-04-22 23:39
guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  1aO(+](;  
>*gf1"  
数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 i^jM9MAi  
Gdb0e]Vt+  
07年就写过这方面的计算程序了。
查看本帖完整版本: [-- ansys分析后面型数据如何进行zernike多项式拟合? --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计