| cyqdesign |
2010-03-26 18:43 |
光电子光谱学原理和应用(Photoelectron spectroscopy),第3版
光电子谱技术是研究原子、分子、固体和表面电子结构的一种非常有效的手段。本书全面系统地介绍了光电子谱技术的原理和应用,并简明讨论了逆光发射、自旋极化光发射和光电子衍射等现象。本书是一本非常实用的光电子谱技术的专著,内容几乎覆盖了光电子研究的所有领域。其特点是紧密联系实验,并利用理论详细解释实验结果,达到理论和应用的有机结合。书中还收集了大量的实际材料的光电子谱分析,同时给出了大量的实验数据,以便于读者的查阅。总之,该书既是一本很有价值的参考书,又可作为初学者的入门教材。 ::k
cV'* eQ80Kf~ 作者在该领域做出了杰出的贡献。在第3版中,作者介绍了大量最新研究成果,并对光电子谱技术很多方面给出了有深刻见解的讨论。 (3
]!ZV abtYa 读者对象:适用于凝聚态物理学、材料物理学和光电子学等专业的高年级本科生、研究生和相关专业的科研人员。 }:1*@7eR HbMD5( [attachment=25361] +Cs.v.GA5 N/8_0]Gf 市场价:¥88.00 5fuYva
>Ik 优惠价:¥78.60 为您节省:9.40元 (89折) 0RGqpJxk
6e4A|< 39oI
&D>8 目录 gI{56Z 1. Introduction and Basic Principles kPezR:
31 1.1 Historical Development 4cZlQ3OE. 1.2 The Electron Mean Free Path aSH =|Jnc 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy 5z@QAQ 1.4 Experimental Aspects PD`EtkUnv 1.5 Very High Resolution Hq0O!Zv 1.6 The Theory of Photoemission !I+F8p 1.6.1 Core-Level Photoemission LR%P\~ 1.6.2 Valence-State Photoemission 0ra+MQBg 1.6.3 Three-Step and One-Step Considerations XEb+Z7L 1 1.7 Deviations from the Simple Theory of Photoemission hO..j References Po7oo9d H5/w!y@ 2. Core Levels and Final States WF` 2.1 Core-Level Binding Energies in Atoms and Molecules Z/+H 2.1.1 The Equivalent-Core Approximation KD73Aw 2.1.2 Chemical Shifts tr$d? 2.2 Core-Level Binding Energies in Solids yq,%<%+ 2.2.1 The Born-Haber Cycle in Insulators aB)G!Rm& 2.2.2 Theory of Binding Energies Hr!%L*h? 2.2.3 Determination of Binding Energies and Chemical Shifts from Thermodynamic Data ~NZ}@J{00_ 2.3 Core Polarization l^;=0UR_ 2.4 Final-State Multiplets in Rare-Earth Valence Bands uYMH5Om+i 2.5 Vibrational Side Bands $x;(C[ 2.6 Core Levels of Adsorbed Molecules `V=F>s$W 2.7 Quantitative Chemical Analysis from Core-Level Intensities #bCzWg References z2god 1" }-%:!*bLj 3. Charge-Excitation Final States: Satellites nAk;a|Q 3.1 Copper Dihalides; 3d Transition Metal Compounds [WBU_ 3.1.1 Characterization of a Satellite ?7Skk 3.1.2 Analysis of Charge-Transfer Satellites Gn>~CoFN 3.1.3 Non-local Screening (k24j*1e$ 3.2 The 6-eV Satellite in Nickel xG|n7w* 3.2.1 Resonance Photoemission ldNWdz 3.2.2 Satellites in Other Metals C)|#z/" 3.3 The Gunnarsson-Sch6nhammer Theory ,Laz515 3.4 Photoemission Signals and Narrow Bands in Metals 3 ,
nr*R! References ^=,N]
j LhQidvCNJ 4. Continuous Satellites and Plasmon Satellites: XPS Photoemission in Nearly Free Electron Systems ?Y'r=Q{w 4.1 Theory Rq,Fp/ 4.1.1 General e\WG-zi/ 4.1.2 Core-Line Shape V2BsvR` 4.1.3 Intrinsic Plasmons *vP:+] 4.1.4 Fxtrinsic FAectron Scattering: Plasmons and Background P/ 7aj:h~P 4.1.5 The Total Photoelectron Spectrum gtJCvVj>g 4.2 Experimental Results _0!<iN L 4.2.1 The Core Line Without Plasmons -< }#ImTN 4.2.2 Core-Level Spectra Including Plasmoas 4<y|SI! 4.2.3 Valence-Band Spectra of the Simple Metals 6d%)MEM 4.2.4 Simple Metals: A General Comment [A46WF>L 4.3 The Background Correction >|_B=<!99W References apd"p{ c%x.cbu> 5. Valence Orbitals in Simple Molecules and Insulating Solids (qg~l@rf 5.1 UPS Spectra of Monatomic Gases nCPIpw,]M 5.2 Photoelectron Spectra of Diatomic Molecules /*hS0xN* 5.3 Binding Energy of the H2 Molecule X:d[eAu0 5.4 Hydrides Isoelectronic with Noble Gases k{ibD5B Neon (Ne) Z$2Vd`XP Hydrogen Fluoride (HF) ^5~)m6=2 Water (H2O) 15wwu} X Ammonia (NH3) VQHQvFRZ) Methane (CH4) ?PDrj/: * 5.5 Spectra of the Alkali HMides m_,j)A% 5.6 Transition Metal Dihalides p^i]{"sjbU 5.7 Hydrocarbons O`FuXB(t 5.7.1 Guidelines for the Interpretation of Spectra from Free Molecules VIg=|Oe), 5.7.2 Linear Polymers *&vi3#ur 5.8 Insulating Solids with Valence d Electrons 'QxPQcU 5.8.1 The NiO Problem ,7*-%05[\ 5.8.2 Mort Insulation b@yFqgJ_ 5.8.3 The Metal-Insulator Transition;the Ratio of the Correlation Energy and the Bandwidth;Doping
z+F:_ 5.8.4Band Structures of Transition Metal Compounds VO+3@d: 5.9 High—Temperature Superconductors kq=tL@W`0} 5.9.1valence-Band Electronic Structure;Polycrystalline Samples iYl$25k/1 5.9.2 Dispersion Relations in High Temperature Superconductors;Single Crystals eVB.g@%T 5.9.3 The Superconducting Gap _~_6qTv-d 5.9.4 Symmetry of the Order Parameter in the High-Temperature SuDerconductors ?%RR+(2m 5.9.5 Core—Level Shifts kG|pM54:^ 5.10 The Fermi Liquid and the Luttinger Liquid 77o&$l,A| 5.11 Adsorbed Molecules Z=CY6Zu7 5.11.1 Outline i"U<=~ 5.11.2 CO on Metal Surfaces p:gM?2p1 References 8@'Q=".J }doJ=lc 6.Photoemission of Valence Electrons froill Metallic Solids in the OHe-Electron Approximation MtIhpTX 6.1 Theory of Photoemission:A Summary of the Three-Step Model VKXZA2<?' 6.2 Discussion of the Photocurrent PbN"+q M 6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample ky98Bz% 6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid 1$adX 6.2.3 Angle-Integrated and Angle-Resolved Data Collection DC8,ns]!y 6.3 Photoemission from the Semi—infinite Crystal:The Inverse LEED Formalism ht@s!5\LK 6.3.1 Band Structure Regime \~`qE<Q/ 6.3.2 XPS Regime I\peO/w 6.3.3 Surface Emission <u85>x 6.3.4 One-Step Calculations ?5#=Mh# 6.4 Thermal Effects xtP=/B/ 6.5 Dipole Selection Rules for Direct Optical Transitions yyVv@ References lg!{?xM uSi/| 7.Band Structtire and Angular-Resolved Photoelectron Spectra _Q3Ad>,U 7.1 Free-Electron Final—State Model 1F_ 1bAh$ 7.2 Methods Employing Calculated Band Structures J>Uzd,
/ 7.3 Methods for the Absolute Determination of the Crystal Momentum ewb/Z[4 7.3.1 Triangulation or Energy Coincidence Method L?(%
* 7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method VIjsz42C 7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method) ^XQr`CqI 7.3.4 The Surface Emission Method and Electron Damping 9QryW\6.@z 7.3.5 The Very-Low-Energy Electron Diffraction Method xr\wOQ*` 7.3.6 The Fermi Surface Method >o"3:/3 7.3.7 Intensities and Their Use in Band-Structure Determinations Ug|o($CY 7.3.8 Summary _Ak?i\ 7.4 Experimental Band Structures "x$RTuWA9 7.4.1 One- and Two-Dimensional Systems ]Ak@!&hyak 7.4.2 Three-Dimensional Solids: Metals and Semiconductors _F1{<" 4 7..4.3UPS Band Structures and XPS Density of States Aa;s.:? 7.5 A Comment H21\6 GY References +T@a/(Gl `y!6(xI 8.Surface States, Surface Effects GL_a`.=@ 8.1 Theoretical Considerations hA81(JWG 8.2 Experimental Results on Surface States L('G1J} 8.3 Quantum-Well States >r"~t70C~] 8.4 Surface Core-Level Shifts (]mh}=:KDg References ]'UO]i/ yEfV8aY'* 9.Inverse Photoelectron Spectroscopy 6QOdd6_d 9.1 Surface States 3e g<) 9.2 Bulk Band Structures _ .%\czO 9.3 Adsorbed Molecules hC.7Z] References wZECG-jr/ 2\z"6 10. Spin-Polarized Photoelectron Spectroscopy Y@S?0 10.1 General Description Q\~4J1 10.2 Examples of Spin-Polarized Photoelectron Spectroscopy t?0D* !D 10.3 Magnetic Dichroism g&*pk5V> References 1;l&ck-Gg/ Upr:sB 11. Photoelectron Diffraction cmIAWFj-)e 11.1 Examples I,r 3.2u 11.2 Substrate Photoelectron Diffraction {q1&4U~'>O 11.3 Adsorbate Photoelectron Diffraction "b!QE2bRO 11.4 Fermi Surface Scans OKp(A References $+<X 1 ?zKVXK7}0 Appendix .Jz$)R A.1 Table of Binding Energies N2VF_[l A.2 Surface and Bulk Brillouin Zones of the Three Low-Index Faces of a Face—Centered Cubic(fcc)Crystal Face =De%]]> A.3 Compilation of Work Functions [ed%"f References -P 5VE0 Index
|
|