清华大学在光学手性研究中取得进展
近年来,手性科学的迅速发展不仅推动了催化、药物开发等生物化工领域的技术进步,还因其具备的光学活性而在光电探测器、发光二极管、液晶显示等光电子学领域展现出广阔的应用前景。值得一提的是,光学手性的电场调控由于其新颖的功能特性和多外场的协同耦合长期以来受到广泛关注。手性铁电材料由于兼具手性光学特性和铁电性,被视为极具潜力的电控光学手性材料,在集成光电子学及信息存储等领域展现出了广阔的应用前景。然而,与具有手性碳原子中心的有机铁电材料相比,如何在无机铁电材料中引入手性是铁电领域长期以来所面临的挑战。 7"F|6JP"$c <r<Dmn|\a 近日,清华大学材料学院研究团队在无机铁电材料中的光学手性及其电场调控方面取得研究新进展。通过稀土离子掺杂调控静电能策略在BiFeO3(BFO)纳米岛中引入涡旋畴,结合铁电畴结构与光学二次谐波-圆二色性探测结果,在实空间中建立了涡旋畴-光学手性之间的耦合关联。此外,通过对样品施加电场可以实现铁电涡旋畴与拓扑平庸畴之间的可逆且非易失转变,进而实现了光学手性信号的产生和擦除,为集成光电子器件提供了材料基础。 Du^x=; n</k/Mk} 团队前期研究表明,BFO纳米岛得益于其独特的几何限域及力电边界条件,展现出丰富的铁电拓扑畴,如四重对顶畴、所罗门畴等,具有拓扑保护特性的畴/畴壁结构产生了畴壁导电、特异性红外吸收等新奇功能特性,相关发现为基于铁电材料的光电功能器件开发提供了借鉴。 )
\-96 xd }F{C= l2 铁电材料的极化构型通常取决于材料的弹性能、静电能以及梯度能等能量项之间的相互竞争,考虑到BFO材料中会存在本征的带电缺陷(氧空位和阳离子空位),团队在先前工作的基础上进一步探究了缺陷电荷及静电能对畴结构的影响。先前BFO纳米岛中的四重对顶畴及荷电畴壁通常需要缺陷电荷在畴壁处富集进而实现对极化的屏蔽作用,由此造成了畴壁处静电能的升高。为了减少材料中的缺陷电荷并降低体系的静电能,研究者采用La离子掺杂策略,在保持对称性不变的基础上,降低体系中的静电能(图1)。相场模拟结果表明,通过对BFO纳米岛体系静电能的调整,纳米岛中可自发形成面内极化呈顺时针旋转或逆时针旋转的涡旋畴(面外极化方向均为向上)。 4@v1jJj "*w)puD
[attachment=130037] Dd0Qp-:2 图1.通过调制静电能在La掺杂BiFeO3纳米岛中产生铁电涡旋畴 t=Z& |