小火龙果 |
2023-08-21 16:52 |
RP Fiber Power | 光在阶跃型折射率多模光纤中的异常情况
光在阶跃型折射率多模光纤中的异常情况 ez86+ %o#D" !V@Y \M
d 多模光纤的使用中,例如从光源传输至应用的常为阶跃型折射率的光纤(即在整个纤芯中拥有恒定折射率的的光纤)。虽然这是一种相当简单的构造,但它仍有一些令人惊讶的现象,而且通常只能通过波动光学来解释,而不能用几何光学的理论解释。在实践中,也经常会遇到一些在传统的教科书中没有答案的问题,本文解释了其中的一些问题。 f;pR8 0} liK 在所有的导模下拥有相同的光功率? !U,qr0h ahS*YeS7 一些问题,与光纤的导模的光功率分布有关,而这些分布取决于发射条件。 J}`K&DtM9 .K}u`v T 第一个问题是:当我们在所有波导模式下达到了同样的光功率,光场看起来会是什么样子的?有趣的是,我们还需要更多参数以弄清楚它意味着什么:我们指的是单色光还是多色光在所有波导模式下的电场同步振荡? nf/iZ & **-%5~ 让我们来假定为第二种,更具有现实意义的情况。进行最简单的假设,对于多色光的情况,假定各个模式的场间互不相干,场强分布为不同模式下(例如在光纤内或光纤后的某个位置)光强度非相干叠加。如果有部分相干的情况,事情会变复杂许多。 \(Zdd
\, (LRv c!`" 使用 RP Fiber power 软件进行以下模拟,首先,假定纤芯半径为 15 微米,数值孔径为 0.2,波长为 940nm,该光纤有 56 个LP模,如果分别计算l为非零时的两个不同方向,则有 105 个的 LP 模式。 XT~JP A>OL5TCl
[attachment=119684] ui G7 )R9>;CuC9? 不出意料的,虽然我们没有得到一个完全平坦的曲线,但也很接近了。 xYM/{[ m]N4.J 下图曲线为远场分布,即光在光纤后的自由空间中传输了很长一段距离。 9qwVBu ; &!/L^Y*+
[attachment=119685] 1uMnlimr |m k $W$h 光纤的极限角度符合给定数值孔径 NA= 0.2 的预期值,但是分布看起来有点奇怪:预测应该是一个扁平的曲线,但中间的波峰是什么?是因为模式数较少产生的结果么?但是,当模式半径增大一倍后(30 微米,v数为 40.1),我们可以得到 211 种模式(计算不同的方向下为 409 个),情况变得更加极端 lUCdnp;w' N.xmHv Pk
[attachment=119687] @/anJrt 我自己也感到十分惊讶,想知道这个波峰与哪些模式有关,也许是某些低阶模式,因为高阶模式通常表现出较高的发散角,而不会在这么小的角度产生这样的波峰?但是出乎意料,结果说明这是一个阶数高的模式产生的,下面是阶数最高的五个模式(即传播常数最小) IOTHk+w !S%XIq}FX
[attachment=119693] "@GopD
!&SUoa 我们可以看到是 LP_{1, 13} 产生了这个奇怪的波峰,其他的模式对这个波峰贡献不大,为了理解,我们需要查看相应的近场的分布。 TDtk'=; )5d&K8@
[attachment=119694] 0>Ki([3 重点是 LP_{1, 13} 模式,由于接近其截止波长,其强度分布延伸到光纤包层中相对较远的地方-这种现象只能用波动光学来理解。这种相对较为宽泛的空间分布导致了远场贡献的低发散性。 t
~U&a9&Z _rs!6tp 所以这是可以理解的,但是我们在实际的入射条件下可以做到么?如果我们仅在光纤纤芯的区域输入光,而模式向包层延伸的越多,则与输入光的分布重叠就会越少,得到的光功率就会给更小。所以我们观察到的现象应该会衰弱很多。 cy^6g?ew Yq`r>g 模拟发射条件 c4L5"_#`x- .yi.GRk 毫无疑问,模拟典型的入射条件当然十分有意义,但在技术上有些麻烦——如何构建一个具有有限相干性的光场,分布的相邻位置之间是否存在某种程度的关联? E;VW6[M wzo-V^+q 利用我们的 RP Fiber Power 软件,人们可以利用以下方法轻松的解决这个问题,只需要少量脚本就可以解决。 ]wa?~;1^& 09|d< 在光纤端口创建一个具有适当空间分辨率的二维复合场振幅阵列。 |%&WYm6 \^N9Q9{7] 作为第一猜测,在所有网格点上随机产生不相关的复振幅,其中强度的期望值(振幅的模平方)遵循阶数为 10 的超高斯函数与光纤芯相当吻合。由于其快速的空间变化,该场会产生非常强的光束发散,远远超出光纤的 NA 值。 c0!bn b OYG8%L 为了校正后者,可以进行二维空间傅立叶变换,用超高斯函数对结果进行多重运算,以便根据给定的 NA 对其进行限制,然后再变换回来。 {U^mL6=&v 7ou2SL}k 根据获得的随机幅值分布,我们可以计算具有重叠积分的所有模式功率,包括模态幅度曲线和随机幅度曲线。我们可以以图形方式显示结果: (M.Sl 4y
582u6^
[attachment=119686] vWe)c J 在此,我们使用正 l 值来表示“余弦”方向上的 LP 模式,使用负l值表示“正弦”方向上的 LP 模式。 4X#>; JsfbY^wz 所有模式的总功率达到入射功率的 99.2%。显然,其他的 0.8% 会进入包层模式,如果将输入场的空间和/或角度范围限制得更加严格,就可以减少这种损失。 u4z]6?,"e 8"8sI 当然,由于随机计算,该图在各次运行间具有较大波动(差异),因此我们会将同样的步骤进行 100 次并取平均值。 "-v9V7KCM )F4er'
[attachment=119691] m>zUwGYEu 这表明除了最高阶的模式外,我们权重取得十分平均,上述 LP_{1, 13} 模式甚至在每入射 1 瓦中的能量中,只有 7.4 微瓦,远小于平均数 2.4 毫瓦。 Cd|V<BB9 &z1r$X.AW 现在我们还想看一看根据这些平均模式计算出的近场和远场的情况(绘制该区域在 x 方向的切面图):近场分布仍然大致平坦;随着平均化程度的提高,会变得更加平坦: M9bb,`X>Q -BQM i0
[attachment=119696] I \vu?$w z ;
:E~; 远场也大致平坦,只是在中心附近有一些形状: 3gv>AgG |P5?0{
[attachment=119700] En5I 我们还可以模拟发射发散度仅为光纤 NA 值一半的光时的情况。平均模式现在仅有更小的 l 和 m 值。 2R2Z6} *RxbqB-
[attachment=119689] : ]CZS 除了远场发散减小之外,近场和远场分布没有发生实质性变化: TKRu^KH9 LsV!Sd
[attachment=119698] 0p
Lb<& | |