首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> 讯技光电&黉论教育 -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2022-01-24 09:30

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ,c4HicRJ#  
C< 9x\JY%  
成像示意图
0n{.96r0R  
首先我们建立十字元件命名为Target Z#Mm4(KNh  
A#. %7S  
创建方法: 8cG?p  
d.FU) )lmD  
面1 : U?#wWbE1  
面型:plane wAKHD*M)  
材料:Air xj3 qOx$  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box fZ$b8  
hyH[`wiq  
5dm~yQN/  
辅助数据: QselW]  
首先在第一行输入temperature :300K, .\ ;'>qy  
emissivity:0.1; 6nZ]y&$G-k  
~Q&J\'GQH  
h^SWb9 1"G  
面2 : vkIIuNdDlx  
面型:plane 2#>;cn\  
材料:Air J,F1Xmr4  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box S"cTi[9  
wXKtQ#o}  
GGp.u@\r  
位置坐标:绕Z轴旋转90度, fzIs^(:fl  
`}EnY@*h  
e9o\qEm   
辅助数据: cLV*5?gVO  
k7^hc th  
首先在第一行输入temperature :300K,emissivity: 0.1; qYC&0`:H  
7%y$^B7{  
J].Oxch&y  
Target 元件距离坐标原点-161mm; Ix-Mp   
gQ_<;'m)2  
h[W`P%xZ  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 0$*7lQ<a#M  
7*l$ i/!  
ubwM*P  
探测器参数设定: aV\i3\da  
3`bQ0-D;  
在菜单栏中选择Create/Element Primitive /plane $aV62uNf  
p F{jIXu  
-G(me"Cu  
YvJFZ_faX  
WXy8<?s  
.PB!1C.}@  
元件半径为20mm*20,mm,距离坐标原点200mm。 ON,[!pc  
k+J%o%* <  
光源创建: cnu&!>8V  
o701RG ~)  
光源类型选择为任意平面,光源半角设定为15度。 j%6p:wDl  
731Lz*IFg  
\Y4(+t=4  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 t7f(%/] H0  
ZSuoD$~k[  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 *ERV\/  
N3%#JdzZ$  
1SExl U  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Bgxk>Y  
$e\s8$EO  
创建分析面: v \:AOY'  
7m2iL#5[  
&;DCN  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Rw?w7?I  
5i[O\@]5  
LKM018H>  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 "V[j&B)P  
dla_uXtM6  
FRED在探测器上穿过多个像素点迭代来创建热图 C~&E7w  
Qc7*p]E&  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 hIV9.{J  
将如下的代码放置在树形文件夹 Embedded Scripts, %3`*)cp@  
k8s)PN  
"Hw%@]#  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 7nB4(A2[S4  
^T&{ORWz  
绿色字体为说明文字, Ti? "Hr<W  
`y>m >j  
'#Language "WWB-COM" .#&)%}GC  
'script for calculating thermal image map Nw"df=,{  
'edited rnp 4 november 2005 HhynU/36  
bW`nLiw}%  
'declarations 1UMEbb  
Dim op As T_OPERATION TzKM~a#  
Dim trm As T_TRIMVOLUME >g$iO`2  
Dim irrad(32,32) As Double 'make consistent with sampling OLx;j+p  
Dim temp As Double 1K/HVj+'.  
Dim emiss As Double W> TG?hH  
Dim fname As String, fullfilepath As String L(3&,!@  
<-1:o*8:}  
'Option Explicit _WS8I>  
ew\:&"@2]w  
Sub Main -|V#U`mwF  
    'USER INPUTS #ft9ms#N  
    nx = 31 ]WMzWt:L  
    ny = 31 Uh0g !zzp  
    numRays = 1000 iQO4IT   
    minWave = 7    'microns QvbH " 7  
    maxWave = 11   'microns kwp%5C-S  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 !60U^\  
    fname = "teapotimage.dat" 2*sTU  
x_3B) &9  
    Print "" N8nt2r<h  
    Print "THERMAL IMAGE CALCULATION" {J"]tx9 ]  
-7!L]BcZ.  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 |Ua);B~F  
Fx!D:.)/G  
    Print "found detector array at node " & detnode -3ePCAtXbe  
s17)zi,?4  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 "EpH02{i  
ZY<R Nwu  
    Print "found differential detector area at node " & srcnode ]EK(k7nH  
,hf W2}  
    GetTrimVolume detnode, trm g{Av =66Z  
    detx = trm.xSemiApe \dQc!)&C9  
    dety = trm.ySemiApe GG%;~4#2  
    area = 4 * detx * dety >K'dgJ245  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety 0:Bpvl5  
    Print "sampling is " & nx & " by " & ny U`[viH>K  
#|T"6jJaQ  
    'reset differential detector area dimensions to be consistent with sampling {_!,T%>+1  
    pixelx = 2 * detx / nx 1Xi>&;],  
    pixely = 2 * dety / ny jOCV)V9}  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 9qDM0'WuU  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 @(c^u;  
aEzf*a|fSV  
    'reset the source power V]Te_ >E;w  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) (1cB Tf  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" vw>(JCR  
>&\.{ aj  
    'zero out irradiance array kMW9UUw  
    For i = 0 To ny - 1 >-V632(/{o  
        For j = 0 To nx - 1 u3 Z]!l  
            irrad(i,j) = 0.0 P$z%:Q  
        Next j +8xT}mX  
    Next i dG+$!*6Z  
5=*i!c _m  
    'main loop uhj]le!  
    EnableTextPrinting( False ) onmpMU7w  
2ih}?%H8  
    ypos =  dety + pixely / 2 *A`ZcO=   
    For i = 0 To ny - 1 $S' TW3  
        xpos = -detx - pixelx / 2 6|lsG6uf  
        ypos = ypos - pixely &_]G0~e  
8D>5(Dg-  
        EnableTextPrinting( True ) ]O}e{Q>  
        Print i  #*rJI3  
        EnableTextPrinting( False ) Ae=JG8Ht~  
dLGHbeZ[(  
'DXT7|Df  
        For j = 0 To nx - 1 .h4NG4FIF  
O`Qke Z}  
            xpos = xpos + pixelx UUDbOxD^w  
4<tbZP3/6)  
            'shift source EKO'S+~  
            LockOperationUpdates srcnode, True j=U"t\{  
            GetOperation srcnode, 1, op $@kOMT  
            op.val1 = xpos ">!pos`<C  
            op.val2 = ypos =RXeN+ &R  
            SetOperation srcnode, 1, op 59$PWfi-\  
            LockOperationUpdates srcnode, False `3jwjy| 5  
8 pf]M&  
raytrace yp4[EqME  
            DeleteRays q_ ^yma  
            CreateSource srcnode @C^x&Sjm  
            TraceExisting 'draw PSv 5tQhm  
Py #EjF12  
            'radiometry ,<!*@xy7v  
            For k = 0 To GetEntityCount()-1 O Lt0Q.{  
                If IsSurface( k ) Then "6IZf>N@#  
                    temp = AuxDataGetData( k, "temperature" ) _\yR/W~  
                    emiss = AuxDataGetData( k, "emissivity" ) y|+5R5}K  
                    If ( temp <> 0 And emiss <> 0 ) Then m+8:_0x "  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) o "0 ~  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) F,)+9/S&  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi F5+F O^3E  
                    End If ^w%%$9=:r  
,_H H8[&  
                End If HCrQ+r{g  
CAviP61T  
            Next k UAz^P6iQ`~  
<uBRLe`)  
        Next j JFc, f  
#b&tNZ4!_  
    Next i z&n2JpLY7  
    EnableTextPrinting( True ) "0nsYE  
Gjq7@F'  
    'write out file vO$cF*  
    fullfilepath = CurDir() & "\" & fname 8a@k6OZ  
    Open fullfilepath For Output As #1 {HM[ )t0  
    Print #1, "GRID " & nx & " " & ny \tvL<U"'  
    Print #1, "1e+308" 6/3E!8  
    Print #1, pixelx & " " & pixely !oXFDC3k  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 f?^-JZ  
rZ+4kf6S   
    maxRow = nx - 1 *k#"@  
    maxCol = ny - 1 #>KiX84  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Fhllqh)  
            row = "" a+J>  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) |xZu?)M4  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 4x-,l1NMR  
        Next colNum                     ' end loop over columns n6,YA2yZO  
@,= pG  
            Print #1, row *7Y#G8 s  
(y?F8]TfM  
    Next rowNum                         ' end loop over rows 6&'kN 2  
    Close #1 68bvbig  
;p~!('{P  
    Print "File written: " & fullfilepath lr;ubBbT  
    Print "All done!!"  h#}w18l  
End Sub 6W1+@ q  
glo G_*W  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \ ;]{`  
$ S3b<]B  
W;R6+@I[  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 -,;woOG  
  
3mYW]  
'?m2|9~  
打开后,选择二维平面图: w(`g)`  
SD*q+Si,1U  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计