首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 'g=yJ  
O5=ggG  
成像示意图
M"9 zK[cz  
首先我们建立十字元件命名为Target f`IgfJN  
2Qy!Aa  
创建方法: q/B+F%QiMQ  
h |lQ TT  
面1 : %~W}262  
面型:plane (bo bKr  
材料:Air S|>Up%{n[  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box 3tm z2JIb  
NqwVs VL  
Q[b({Vj;tG  
辅助数据: H_AV3 ;  
首先在第一行输入temperature :300K, ,jt098W  
emissivity:0.1; !}3`Pl.(r  
\iL,l87  
=)zq %d?i;  
面2 : \YKh'|04  
面型:plane Cir =(  
材料:Air cUm9s>^)/  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box -pD&@Wlwak  
ROjjN W`W  
& 9]KkY=  
位置坐标:绕Z轴旋转90度, HJ'93,  
3=<iGX"z  
`-/l$A} U  
辅助数据: Y(:OfC?  
g~y9j88?  
首先在第一行输入temperature :300K,emissivity: 0.1; F d\XDc[g  
=3zn Ta }  
EIYM0vls(  
Target 元件距离坐标原点-161mm; dH/t|.%  
\Zh)oUHd  
kIfb!  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 RYV6hp)|  
eFnsf}(Iy  
hZ'oCRM  
探测器参数设定: 5"gRz9Ta`  
z^Jl4V  
在菜单栏中选择Create/Element Primitive /plane 3'"M31iA  
wr$}AX  
<bx9;1C>zd  
V- cuG.  
t@u\ 4bv  
9V],X=y~  
元件半径为20mm*20,mm,距离坐标原点200mm。 8@fDn(]w  
 ft'iv  
光源创建: 4'd{H Rs  
C}h@El  
光源类型选择为任意平面,光源半角设定为15度。 YEQW:r_h.S  
%)/f; T6  
Ij #a  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 TN %"RL  
jSFN/C.9h  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 X]yERaJ,i  
ZmULy;{<)  
baNfS  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 +r0eTP=zf  
f)zg&Ib  
创建分析面: @"I#b99  
L, {rMLM%  
Qsntf.fT  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ?fmt@@]T?  
@ g75T`N  
Xo@YTol  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ^)q2\ YE;  
O$Vm#|$sq  
FRED在探测器上穿过多个像素点迭代来创建热图 30_un  
W"kw>JEt  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 :6u3Mj{  
将如下的代码放置在树形文件夹 Embedded Scripts, ;1.>"zX(  
Z% ;4Ed  
d# 3tQ*G/  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 i$ L]X[  
|)q K g  
绿色字体为说明文字, s1vrzze  
5(|M["KK~  
'#Language "WWB-COM" p? ?/r  
'script for calculating thermal image map Uk:.2%S2  
'edited rnp 4 november 2005 Q$)|/Y))  
y<`?@(0$  
'declarations F36ViN\b  
Dim op As T_OPERATION ,%h!%nz!  
Dim trm As T_TRIMVOLUME $G_Q`w=jM  
Dim irrad(32,32) As Double 'make consistent with sampling mY`]33??v  
Dim temp As Double {1MGb%xW  
Dim emiss As Double zw: C*sY  
Dim fname As String, fullfilepath As String *>'2$me=  
bw<w u}ED  
'Option Explicit ~B!O~nvdQ  
WkaR{{nM  
Sub Main s$Zq/l$1x  
    'USER INPUTS }{8Fo4/  
    nx = 31 JblmXqtC  
    ny = 31 5)yOw|Bd  
    numRays = 1000 V+qJrZ ,i  
    minWave = 7    'microns lV<Tsk'  
    maxWave = 11   'microns X B*}P  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 M{xVkXc>  
    fname = "teapotimage.dat" 5}eQaW48  
C,r`I/;  
    Print "" _IL2-c8  
    Print "THERMAL IMAGE CALCULATION" rAx"~l.=  
~*!u  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 3}4p_}f/[4  
iS"8X#[]N  
    Print "found detector array at node " & detnode rQEi/  
y?#9>S >:\  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 |= cCv_y  
VD24X  
    Print "found differential detector area at node " & srcnode \V^*44+ <!  
\C K(;J  
    GetTrimVolume detnode, trm Ud#X@xK<h  
    detx = trm.xSemiApe h}|6VJ@.  
    dety = trm.ySemiApe %f(S'<DhC  
    area = 4 * detx * dety sz/*w7  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety "#pzZ)Zh  
    Print "sampling is " & nx & " by " & ny (`6%og#8  
ALd]1a&  
    'reset differential detector area dimensions to be consistent with sampling $(gGoL<  
    pixelx = 2 * detx / nx @H\pipT_b  
    pixely = 2 * dety / ny !7*(!as  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False K 3Yw8t2J  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 YOV :  
pp~3@_)b  
    'reset the source power hOPe^e"  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) gF[6c`-s  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 94|yvh.B  
]U,CKJF%/  
    'zero out irradiance array 9 g Bjxqm  
    For i = 0 To ny - 1 [?chK^8  
        For j = 0 To nx - 1 P8wy*JvT  
            irrad(i,j) = 0.0 z2w;oM$g  
        Next j %bP~wl~  
    Next i YwL`>?  
g5#CN:%f  
    'main loop ja[OcR-tX  
    EnableTextPrinting( False ) |2)Sd[ q  
mG)8U{L  
    ypos =  dety + pixely / 2 Q.,DZp   
    For i = 0 To ny - 1 !4R>O6k   
        xpos = -detx - pixelx / 2 ] @X{dc  
        ypos = ypos - pixely 1^C|k(t  
A&?}w_|9  
        EnableTextPrinting( True ) i&`!|X-=R  
        Print i jfUJ37zNZr  
        EnableTextPrinting( False ) \M5P+Wk '  
k(P3LJcYQ  
Q|Pbt(44  
        For j = 0 To nx - 1 -(*nSD9  
EeCFII  
            xpos = xpos + pixelx L=,OZ9aA  
&Y1`?1;nw  
            'shift source P,i"&9 8  
            LockOperationUpdates srcnode, True &hayR_F9  
            GetOperation srcnode, 1, op (ZV;$N-t  
            op.val1 = xpos `=79i$,,t  
            op.val2 = ypos nv"G;W  
            SetOperation srcnode, 1, op =3*Jj`AV  
            LockOperationUpdates srcnode, False ~m=$VDWm  
&Yp+k}XU  
            'raytrace 9e~WK720=  
            DeleteRays $uCiXDKCq  
            CreateSource srcnode 2"@Ft()]  
            TraceExisting 'draw 3DW3LYo{  
6lsL^]7  
            'radiometry b,dr+RB  
            For k = 0 To GetEntityCount()-1 6xarYh(  
                If IsSurface( k ) Then )1f+ld%R  
                    temp = AuxDataGetData( k, "temperature" ) +Hj/0pp  
                    emiss = AuxDataGetData( k, "emissivity" ) wcZbmJ:  
                    If ( temp <> 0 And emiss <> 0 ) Then I!0JG`&  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) KmQ^?Ad- C  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) O)uOUB  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi :uo[&&c  
                    End If P-'_}*wxi  
?; [ T  
                End If ]>D)#  
gg[ 9u-  
            Next k .+yW%~0  
t?{B_Bf  
        Next j %cX"#+e  
]#zZWg zv  
    Next i R \5Vq$Q  
    EnableTextPrinting( True ) rjUBLY1(  
<Ct_d Cc  
    'write out file =&Xdm(  
    fullfilepath = CurDir() & "\" & fname \D?:J3H*]  
    Open fullfilepath For Output As #1 h*Je35  
    Print #1, "GRID " & nx & " " & ny Mra35  
    Print #1, "1e+308" t`5j4bdG  
    Print #1, pixelx & " " & pixely ZenPw1-  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 7Fz xe$A  
d~@q%-`lA  
    maxRow = nx - 1 ]JjK#eh  
    maxCol = ny - 1 & Kmy}q  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) q8xd*--#  
            row = "" }ptMjT{9  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) VFj(M j`}G  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string J8<J8x4  
        Next colNum                     ' end loop over columns _KN/@(+F  
M2@;RZ(|  
            Print #1, row *C6D3y  
5HKW"=5Cf  
    Next rowNum                         ' end loop over rows iW;i!,  
    Close #1 $^_|j1 z#i  
JA^v  
    Print "File written: " & fullfilepath e1/sqXWo  
    Print "All done!!" 3o6RbW0[  
End Sub 6/tI8H3E  
f:woP7FP  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: a1c1k}  
W7=V{}b+  
cozXb$bBY  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 v`DI<Lt  
  
3fr^ T  
rmd;\)#*`  
打开后,选择二维平面图: gfy19c 9  
}Qr6 l/2  
QQ:2987619807
zY=jXa)K~  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计