首页 -> 登录 -> 注册 -> 回复主题 -> 发表主题
光行天下 -> FRED,VirtualLab -> 十字元件热成像分析 [点此返回论坛查看本帖完整版本] [打印本页]

infotek 2020-11-18 10:58

十字元件热成像分析

简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 VpkkiN  
PG/xX H  
成像示意图
~<#!yRy>r  
首先我们建立十字元件命名为Target RZ&T\;m,7  
T"$yh2tSY  
创建方法: ww"HV;i  
nZ2mY!*  
面1 : 2oFHP_HVfu  
面型:plane 9Iod[ x  
材料:Air V<;w  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box mxV0"$'Fm  
_7"G&nZ0  
AGxG*KuZ  
辅助数据: zLiFk<G@Xi  
首先在第一行输入temperature :300K, n++L =&Wd  
emissivity:0.1; nZ 0rxx[V?  
?xuhN G@  
!h0#es\  
面2 : JW4~Qwx  
面型:plane IPhV|7  
材料:Air 80M"`6  
孔径:X=1.5, Y=6,Z=0.075,形状选择Box o4"7i 9+g  
gOA  
=i/7&gC  
位置坐标:绕Z轴旋转90度, $*`=sV!r  
}G#TYF}  
f|f9[h'  
辅助数据: u!As?AD.  
Ok=RhoZZ  
首先在第一行输入temperature :300K,emissivity: 0.1; $i+ 1a0%n  
(*Jcx:rH  
.'y]Ea  
Target 元件距离坐标原点-161mm; (gv1f  
f@%H"8w!  
<d GGH  
单透镜参数设定:F=100, bend=0, 位置位于坐标原点 VE<&0d<  
t@TBx=16  
xi.L?"^/!  
探测器参数设定: MW^,l=kqW)  
SG{> t*E  
在菜单栏中选择Create/Element Primitive /plane #mNM5(o  
h$Z_r($b  
f<V#Yc(U }  
8T:|~%Sw  
,&;#$ b5  
]F5qXF5  
元件半径为20mm*20,mm,距离坐标原点200mm。 a+TlZE>8  
8v},&rhPQq  
光源创建: <wt#m`Za  
8Q&hhmOnz  
光源类型选择为任意平面,光源半角设定为15度。 v(? ^#C>6W  
R)AFaP |  
`[<j5(T  
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 5h9`lS2  
Lzzf`jN]  
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 n1n1 }  
3McBTa!  
W 2VH?-Gw  
功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 h\k!X/  
D 6trqB  
创建分析面: Kf<-PA  
p!MOp-;-  
2,c{Z$\kn  
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 h2 2-v X  
xF'9`y^]!@  
2jTP (b2b  
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 }+K SZ,  
^mLZT*   
FRED在探测器上穿过多个像素点迭代来创建热图 #2thg{5  
Ctpr.  
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 .z u0GsU=  
将如下的代码放置在树形文件夹 Embedded Scripts, yIBT*,4  
gdupG  
aVI/x5p~  
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ^zv0hGk2  
KLW#+vZ  
绿色字体为说明文字, sgdxr!1?y  
-hav/7g  
'#Language "WWB-COM" \$Xo5f<  
'script for calculating thermal image map cD&53FPXC  
'edited rnp 4 november 2005 / AFn8=9'^  
PN ,pEk|  
'declarations b !FX]d1~k  
Dim op As T_OPERATION c <8s \2  
Dim trm As T_TRIMVOLUME @EZ@X/8{&  
Dim irrad(32,32) As Double 'make consistent with sampling 3 8>?Z ]V  
Dim temp As Double f>k<I[C<  
Dim emiss As Double c:0nOP  
Dim fname As String, fullfilepath As String kB-%T66\  
T^3_d93}d  
'Option Explicit MA\"JAP/  
(9r\YNK  
Sub Main 8X":,s!  
    'USER INPUTS JivkY"= F  
    nx = 31 .4c*  _$  
    ny = 31 R[Q`2ggG  
    numRays = 1000 ( H/JB\~r  
    minWave = 7    'microns 3+mC96wN  
    maxWave = 11   'microns )UA$."~O  
    sigma = 5.67e-14 'watts/mm^2/deg k^4 Ek|#P{!  
    fname = "teapotimage.dat"  LAG*H  
o2e aSG  
    Print "" 6 /^$SWd2  
    Print "THERMAL IMAGE CALCULATION" n?vw|'(}  
+cQGX5 K  
    detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 }gQ FWT  
Z?k4Kb  
    Print "found detector array at node " & detnode $]IX11.m  
vzl+0"  
    srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 %n-:mSus  
MP/6AAt7=|  
    Print "found differential detector area at node " & srcnode (uV ~1  
M{gtu'.  
    GetTrimVolume detnode, trm /QDlm>FM4  
    detx = trm.xSemiApe 9%e& Z'l  
    dety = trm.ySemiApe 2P9gS[Ub  
    area = 4 * detx * dety &z[39Q{~  
    Print "detector array semiaperture dimensions are " & detx & " by " & dety 0j*-ZvE)30  
    Print "sampling is " & nx & " by " & ny %[(DFutJY+  
>Q&E4jC  
    'reset differential detector area dimensions to be consistent with sampling _" 0VM >  
    pixelx = 2 * detx / nx EgO=7?(pW  
    pixely = 2 * dety / ny N1rBpt  
    SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Fy!u xT-\  
    Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 qMT7g LB'1  
OZ\]6]L  
    'reset the source power e573UB  
    SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) iXN"M` nhm  
    Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" jj^{^,z\  
:7&#ej6  
    'zero out irradiance array >5C|i-HX  
    For i = 0 To ny - 1 | k"?I  
        For j = 0 To nx - 1 '`g#Zo  
            irrad(i,j) = 0.0 JBa( O- T  
        Next j b~?FV>gl  
    Next i >SO !{  
Sc Uh -y_  
    'main loop [ iE%P^  
    EnableTextPrinting( False ) n_5m+ 1N  
w'[lIEP 2$  
    ypos =  dety + pixely / 2 Dohq@+] O  
    For i = 0 To ny - 1 ;O=tSEe  
        xpos = -detx - pixelx / 2 H\]ZtSw8-  
        ypos = ypos - pixely S;DqM;Q  
\tf \fa  
        EnableTextPrinting( True ) VfAC&3 %M  
        Print i tRU+6D <w  
        EnableTextPrinting( False ) P_11N9C  
vZj:\geV  
*,g|I8?%VD  
        For j = 0 To nx - 1 g.yr) LHt0  
28 qTC?  
            xpos = xpos + pixelx F9rxm  
7PG&G5  
            'shift source {@K>oaZ  
            LockOperationUpdates srcnode, True K=x>%6W7b  
            GetOperation srcnode, 1, op (. ~#bl  
            op.val1 = xpos 6t9Q,+nJ  
            op.val2 = ypos wi'CBfr'z  
            SetOperation srcnode, 1, op 0M^7#),  
            LockOperationUpdates srcnode, False e| x1Dq  
5Ug.J{d  
            'raytrace ^|yw)N]Q/  
            DeleteRays L{y%\:]  
            CreateSource srcnode [DS.@97n  
            TraceExisting 'draw k<p$BZ  
<SeK3@Gi  
            'radiometry h}PeXnRU  
            For k = 0 To GetEntityCount()-1  ;0G+>&C8  
                If IsSurface( k ) Then e>`+Vk^Jc  
                    temp = AuxDataGetData( k, "temperature" ) y8"8QH  
                    emiss = AuxDataGetData( k, "emissivity" )  >-EJLa  
                    If ( temp <> 0 And emiss <> 0 ) Then e1$T%?(&[  
                        ProjSolidAngleByPi = GetSurfIncidentPower( k ) 5yPw[ EY  
                        frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ,PH;j_  
                        irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ``*iK  
                    End If 0mcZe5RS  
Jq0aDf f  
                End If C3EQz r`  
"G. L)oD  
            Next k zu8   
J3Ipk-'lx  
        Next j chw6_ctR>  
K q;X(&Z  
    Next i DC?U +  
    EnableTextPrinting( True ) I8*_\Ez  
z ((Y\vP  
    'write out file m x`QBJ  
    fullfilepath = CurDir() & "\" & fname vv0A5p8H  
    Open fullfilepath For Output As #1 b CWSh~  
    Print #1, "GRID " & nx & " " & ny -/ 5" Py  
    Print #1, "1e+308" 9H^$cM9C  
    Print #1, pixelx & " " & pixely ^0oOiZs  
    Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 #mhR^60,  
\@")2o+  
    maxRow = nx - 1 DZPg|*KT  
    maxCol = ny - 1 ^{f ^%)X  
    For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) WdQR^'b$   
            row = "" 7p"4rL  
        For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) y5>X0tT  
            row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 0hJ,l.  
        Next colNum                     ' end loop over columns .g Z1}2GF=  
3zC<k2B  
            Print #1, row ~kHWh8\b:  
=$kSvCjP  
    Next rowNum                         ' end loop over rows 6ZvGD}/  
    Close #1 F3)w('h9c  
be^+X[  
    Print "File written: " & fullfilepath ,O`a_b]  
    Print "All done!!" 2c)Ez?  
End Sub mKTE%lsH  
JU>F&g/|  
在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: l~",<bTc  
sVT:1 kI  
4%refqWK  
找到Tools工具,点击Open plot files in 3D chart并找到该文件 ,> %=,x  
  
mz-sazgV  
l~mC$>f  
打开后,选择二维平面图: 86 $88`/2  
:'6vIPN5  
QQ:2987619807
zDD  
查看本帖完整版本: [-- 十字元件热成像分析 --] [-- top --]

Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1 网站统计