小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* Vil@?Y" Demo for program"RP Fiber Power": thulium-doped fiber laser, 5/Ydv
RB67 pumped at 790 nm. Across-relaxation process allows for efficient L=d$"Q population of theupper laser level. V^j3y`K *) !(* *)注释语句 k%"$$uo '"Bex` diagram shown: 1,2,3,4,5 !指定输出图表 {]+ jL1 ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 "EJ\]S]$X ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 $`E4m8fX ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 0Wa#lkn$I ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 {\P?/U6~f ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 @[n2dmj 5fU!'ajaN7 include"Units.inc" !读取“Units.inc”文件中内容 4#TnXxL eT;AAGql include"Tm-silicate.inc" !读取光谱数据 cB{%u
' @8|~+y8, ; Basic fiberparameters: !定义基本光纤参数 1oB$MQoc L_f := 4 { fiberlength } !光纤长度 O:2 #_ No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 a a4$'8s r_co := 6 um { coreradius } !纤芯半径 2q+la|1Cr N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ,Yo: &>As $Xf~# uH ; Parameters of thechannels: !定义光信道 N[>:@h l_p := 790 nm {pump wavelength } !泵浦光波长790nm ggMUdlU dir_p := forward {pump direction (forward or backward) } !前向泵浦 i"/ r)>"b P_pump_in := 5 {input pump power } !输入泵浦功率5W QT_Srw@ w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um $H4=QVj6 I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 EH(tUwY%{ loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 n:F@gZd` t/ A:k l_s := 1940 nm {signal wavelength } !信号光波长1940nm '=$TyiU w_s := 7 um !信号光的半径 fQxSMPWB I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 e,^pMg~ loss_s := 0 !信号光寄生损耗为0 /;+oz b S,etd R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ubD#I{~J .Xi2G@D ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 q5!0\o: calc \Ph]*% begin q{/*n]K global allow all; !声明全局变量 8:~b
&> set_fiber(L_f, No_z_steps, ''); !光纤参数 ;
/=L add_ring(r_co, N_Tm); B.El a def_ionsystem(); !光谱数据函数 \{lE0j7}h pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 t`uc3ta"9 signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 (yfXMp,x signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 qv.n9 9?] set_R(signal_fw, 1, R_oc); !设置反射率函数 {JTmP `&l finish_fiber(); Ohc^d"[7 end; #iiwD| Rb?~ Rs\ ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 R !9qQn? show "Outputpowers:" !输出字符串Output powers: }N@n{bu+ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) QJQJR/g show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) $-Cy h:_NA D6Dn&/>Zp ; ------------- ekrBNDs9 diagram 1: !输出图表1 %
^e@`0L *aI~W^N3 "Powers vs.Position" !图表名称 J, r Xx: ]/a
g*F x: 0, L_f !命令x: 定义x坐标范围 Q~8y4=|#CY "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 QOd!]*W`?m y: 0, 15 !命令y: 定义y坐标范围
PaNeu1cO y2: 0, 100 !命令y2: 定义第二个y坐标范围 I-TlrW=t frame !frame改变坐标系的设置 |ebvx?\ legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) L(;.n>/ hx !平行于x方向网格 \,hrk~4U;( hy !平行于y方向网格 X`D+jiQ(f (NPxab8e* f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 !KAsvF,j color = red, !图形颜色 UP R/XQ width = 3, !width线条宽度 @\!ww/QT "pump" !相应的文本字符串标签 +3)[>{~1Z f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 n? }5! color = blue, ;c$@@l width = 3, *l:&f_ngV "fw signal" 72u db^ f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 \<=IMa0 color = blue, U[ bgu#P; style = fdashed, dt<~sOT3s width = 3, ~oo'ky*H! "bw signal" MJA~jjy4 JS PW>W" f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 I'?6~Sn3 yscale = 2, !第二个y轴的缩放比例 {!MVc<G. color = magenta, YQ+^ width = 3, Psp^@ style = fdashed, e+l\\9v "n2 (%, right scale)" v[smQO Ajg\aof0{ f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 V!W1fb7V yscale = 2, LfHzT<)| color = red, A*R n<{U width = 3, EQ/^& style = fdashed, \@8*T S "n3 (%, right scale)" D,E$_0 `On3/gU| 1TIlINlJ ; ------------- m9woredS, diagram 2: !输出图表2 "1K:/n ;$z7[+M "Variation ofthe Pump Power" l0:5q?g x^X$M$o,l x: 0, 10 &kiF/F 1 "pump inputpower (W)", @x aLYLd/ KV y: 0, 10 XddHP;x y2: 0, 100 )@_ugW-j frame dl_{iMhF&E hx cLAesj hy i%MA"I\9 legpos 150, 150 dqxd3,Z g}m+f]| f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 c_Tzyh7l4 step = 5, ^4 8\>-Q\ color = blue, DFc [z"[ width = 3, NHAH#7]M&1 "signal output power (W, leftscale)", !相应的文本字符串标签 ,z[(k" finish set_P_in(pump, P_pump_in) GkciA{ eG4>d^`c f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 VKNp,Lf yscale = 2, Z}+yI, step = 5, I-bF{ color = magenta, {"jd_b& width = 3, <wa(xDBw "population of level 2 (%, rightscale)", p1~*;;F
finish set_P_in(pump, P_pump_in) YmgCl!r@ =hGJAU f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 LN\[Tmd & yscale = 2, ED/FlL{ step = 5, l2s{~ IC color = red, `s%QeAde width = 3, _ eiF@G "population of level 3 (%, rightscale)", n/ AW?' finish set_P_in(pump, P_pump_in) 5
q65nF lJ&y&N<O C\A49q ; ------------- {xToz]YA diagram 3: !输出图表3 H-2_j '?8Tx&}U8 "Variation ofthe Fiber Length" N+J>7_k fhr-Y'
x: 0.1, 5 ;ctU&` "fiber length(m)", @x 7k~Lttuk y: 0, 10 [ f34a "opticalpowers (W)", @y cix36MR_ frame Ihqs%;V hx 0;<OYbm3< hy Sr"/- M(2`2-/xh f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Pr/]0<s step = 20, 6c &Y color = blue, 8lb-}= width = 3, 02pplDFsM "signal output" ;wgFr.#hp@ @[v8}D ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 OpQ8\[X+ step = 20, color = red, width = 3,"residual pump" 11{y}J t!~S9c ! set_L(L_f) {restore the original fiber length } ;RHNRVP )8'jxiGs gl
"_:atW ; ------------- PUCx]5 diagram 4: !输出图表4 7=3O^=Q^Q .Q[yD<)Ubs "TransverseProfiles" nh0&'hA 6p m~sD I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 2*Q3.2 Z 8[R1A x: 0, 1.4 * r_co /um Q.ukY@L.' "radialposition (µm)", @x FUqt)YHi y: 0, 1.2 * I_max *cm^2 ~-<:+9m "intensity (W/ cm²)", @y d1bhJK y2: 0, 1.3 * N_Tm SH=:p^J frame u E.^w;~2= hx km4g}~N</ hy %w:'!X>< }"4roJ f: N_dop(1, x * um,0), !掺杂浓度的径向分布 y\z > /q yscale = 2, 7P*Z0%Q color = gray, =fWdk\Wv width = 3, ls @5^g maxconnect = 1, 2kJ!E@n7 "N_dop (right scale)" (}"S)#C 4swKjN
& f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 [pR)@$"k' color = red, 1Z 6SI>p maxconnect = 1, !限制图形区域高度,修正为100%的高度 4m /TW) width = 3, <4f,G]UH_ "pump" u`6/I#q` G"> 0]LQ f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 SUu >6'LN color = blue, q,@+^aZ maxconnect = 1, H&K3"Ulw width = 3, l&|)O6N "signal" MS{{R+& "5|\X<f WIG=D{\Yx ; ------------- qiU5{} diagram 5: !输出图表5 L#ZLawG Q!]IG;3Sx| "TransitionCross-sections" 7E\gxQ(vU ~6sE an3p I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 9P0yv3 ^#w{/C/n x: 1450, 2050 ~p^7X2% ! "wavelength(nm)", @x HlRAD|]\ y: 0, 0.6 ;
8E; "cross-sections(1e-24 m²)", @y Ut_mrb+W frame S+pP!YX hx >%h7dC3h hy j{"[Ec ^ $wJi9D6 f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 0[9I0YBJ color = red, R9vY:oN% width = 3, u G[!w!e "absorption" M')bHB(~v f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 9v$qrM`8 color = blue, ns26$bU width = 3, 8Z!*[c>K-? "emission" )UP8#|$#T uS-3\$
|
|