小火龙果 |
2020-05-28 16:28 |
RP Fiber Power仿真设计掺铥光纤激光器代码详解
(* FMNT0 Demo for program"RP Fiber Power": thulium-doped fiber laser, q4y sTm pumped at 790 nm. Across-relaxation process allows for efficient 1&.q#,EMn( population of theupper laser level. JV`"kk/ *) !(* *)注释语句 FD[o94`% KKcajN diagram shown: 1,2,3,4,5 !指定输出图表 Hq;*T3E ; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 &)ED||r, ; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 2K
VX ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ;ZtN9l ; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Q*54!^l+_r ; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 `37%|e 3bQ !(8)'<t9 include"Units.inc" !读取“Units.inc”文件中内容 lK%)a +2 #6F|}E include"Tm-silicate.inc" !读取光谱数据 y)K!l:X {\u6Cj x ; Basic fiberparameters: !定义基本光纤参数 O/b1^
Y
L_f := 4 { fiberlength } !光纤长度 LFX[v No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Y~Z&h?H'} r_co := 6 um { coreradius } !纤芯半径 '(fzznRH N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 'Y22HVUX Z/e^G f#i ; Parameters of thechannels: !定义光信道 lKBI3oYn l_p := 790 nm {pump wavelength } !泵浦光波长790nm EL^j}P dir_p := forward {pump direction (forward or backward) } !前向泵浦 ZE[NQ8 P_pump_in := 5 {input pump power } !输入泵浦功率5W m`9P5[m#x> w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um }Dx5W9Ri" I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 @>q4hYF loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 n3_|#1Qu qE*h UzA l_s := 1940 nm {signal wavelength } !信号光波长1940nm U7xKu75G1 w_s := 7 um !信号光的半径 2UeK%-~W? I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 DCSmEy`. loss_s := 0 !信号光寄生损耗为0 ^~kfo| RHu4cK!5 R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ?W\KIp\Kn v`\ CzT ; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 #:E^($v calc 'byao03 begin jP31K{G? global allow all; !声明全局变量 4&<zkAMR set_fiber(L_f, No_z_steps, ''); !光纤参数 [!j;jlh7}, add_ring(r_co, N_Tm); 8E|FFHNK<2 def_ionsystem(); !光谱数据函数 P/[}$(&: pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 BmFtRbR signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 j)mi~i*U signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 7b*9
Th*a set_R(signal_fw, 1, R_oc); !设置反射率函数 &\W5|*`x- finish_fiber(); bW2Msv/H end; ,T8fo\a4 `{&l
_ ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 9Idgib& show "Outputpowers:" !输出字符串Output powers: d(q2gd@ show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) F$HL\y show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) g+QNIM> :MILOwF K_}81|= ; ------------- ge[&og/$ diagram 1: !输出图表1 ',s{N9 D6:"k
2 "Powers vs.Position" !图表名称 ^)1!TewCY 4`p[t;q x: 0, L_f !命令x: 定义x坐标范围 1Ba.'~: "position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 {W%/?d9m y: 0, 15 !命令y: 定义y坐标范围 l<p6zD$l y2: 0, 100 !命令y2: 定义第二个y坐标范围 Q32GI,M%B frame !frame改变坐标系的设置 66'AaA;0^i legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 7!q.MOYm hx !平行于x方向网格 mU;\,96# hy !平行于y方向网格 `r+`vJ$ ,%]xT>kH f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 *W<|5<<u@ color = red, !图形颜色 WO+_|*& width = 3, !width线条宽度 ,,~|o3cfq "pump" !相应的文本字符串标签 +.|8W !h`1 f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 .xg, j{%( color = blue, j12khp? width = 3, TN.&FDqC9 "fw signal" ^w~Utx4 f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 KTjf2/ color = blue, p}
i5z_tS style = fdashed, !po29w:S width = 3, ''wF%q "bw signal" \"Aw
ATQ gg QI f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 f/]g@/` yscale = 2, !第二个y轴的缩放比例 Hv .C5mo color = magenta, z/t+t_y width = 3, k1_3\JO"6 style = fdashed, Jtl[9qe#] "n2 (%, right scale)" [ FNA: B#K2?Et!t f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 z=a{;1A yscale = 2, ]F1ZeAh5 color = red, ]y<<zQ_fhY width = 3, Hh0a\%! style = fdashed, MUqV$#4@I "n3 (%, right scale)" y%xn(Bn Uv(Uj3D 2Ls ; ------------- C]D voJmBs diagram 2: !输出图表2 2z[A&s_ }|4dEao\ "Variation ofthe Pump Power" CDgu`jj%] Wf:I
0 x: 0, 10 J(%kcueb
"pump inputpower (W)", @x $K*&Wdo y: 0, 10 l} UOg
y2: 0, 100 9UeK}Rl^n frame mdPEF)- hx d=8q/]_p hy kc-v(WIC legpos 150, 150 nK5FPFz8 ^PI8Bvs>j f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Ee -yP[2
* step = 5, l*z.20^P color = blue, Z4@GcdZ width = 3, 'hl4cHk14 "signal output power (W, leftscale)", !相应的文本字符串标签 6zJfsKf$ finish set_P_in(pump, P_pump_in) <X1^w #OVf2
" f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 &ZUV=q%g9n yscale = 2, o$_,2$>mn step = 5, dSm; e_s color = magenta, BV01&.<| width = 3, ?O<D&CvB "population of level 2 (%, rightscale)", x-HN]quhe finish set_P_in(pump, P_pump_in) 7;;HP`vY #DFfySH)A f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ~kW[d1'c yscale = 2, E/_I$<,_y step = 5, O$,MdhyXC color = red, 9k[>(LC width = 3, sHQ82uX "population of level 3 (%, rightscale)", W6 U**ir. finish set_P_in(pump, P_pump_in) Xv'5%o^i* Juqe%he` (+ibT;!] ; ------------- }{.0mu9 diagram 3: !输出图表3
).b,KSi 5g(`U+,*( "Variation ofthe Fiber Length" _wKaFf <|MF\D' x: 0.1, 5 ij<6gv~ n" "fiber length(m)", @x $'obj y: 0, 10 $06[D91' "opticalpowers (W)", @y P 4|p[V8 frame kg^VzNX hx swh8-_[c/ hy yhpeP <yHa[c`L f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 C[xY 0<^B step = 20, (7Q
Fy color = blue, n$oHr width = 3, m<X[s "signal output" gL:Vj%c "$Mz>]3&q ;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Ob#d;F step = 20, color = red, width = 3,"residual pump" M)JKe!0ad1 =
olmBXn/ ! set_L(L_f) {restore the original fiber length } exHg<18WSe Y 3 QrD&V :7P/ZC% ; ------------- NB|yLkoDyI diagram 4: !输出图表4 'M'k$G@Z ^L@2%}6b` "TransverseProfiles" |r%NMw #y v{[:7]b_= I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 4Lb!Au|Y /5$;W'I x: 0, 1.4 * r_co /um W#.+C6/ "radialposition (µm)", @x 8$TSQ~ y: 0, 1.2 * I_max *cm^2 R#^.8g)t "intensity (W/ cm²)", @y [ u.r]\[J y2: 0, 1.3 * N_Tm ?~p]Ey}~9 frame 7B)m/%>3s hx 'C2X9/!, hy <lo\7p$A dz>2/' f: N_dop(1, x * um,0), !掺杂浓度的径向分布 :[r/
Y yscale = 2, IGQcQ/M color = gray, P\lEfsuR width = 3, L]kd.JJvy maxconnect = 1, o<8('j
"N_dop (right scale)" nUy. gAb TF1,7Qd f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 aVvma= color = red, F!_8?=| maxconnect = 1, !限制图形区域高度,修正为100%的高度 E;tEmGf6F width = 3, 6^l|/\Y{ "pump" l{o,"P" :2zga=)g f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 J_S8=`f% color = blue, `]7==c #Y maxconnect = 1, pv[Gg^ width = 3, |Fi{]9(G2 "signal" bpx
^ VchI0KL? JuKG#F#, ; ------------- Mm)yabP diagram 5: !输出图表5 Oo0SDWI`( cTJi8f=g "TransitionCross-sections" }NJKkj? 1]A$ I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L~+/LV S 6CI+W x: 1450, 2050 omMOA "wavelength(nm)", @x 'CMbqLk# y: 0, 0.6 , UsY0YC "cross-sections(1e-24 m²)", @y 4=~+Bz frame #soV'SFG hx PS}'LhZ hy W=:AOBK 8g0VTY4$jP f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ?Gl]O3@3 color = red, xwF mY'o width = 3, %b[>eIJU# "absorption" nZ'-3 f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 0,/I2!dF? color = blue, $*Kr4vh width = 3, @PT([1C "emission" -|GKtZ]} w*M&@+3I
|
|