| songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 :q~qRRmjBe function sjr=nfdre(~) MjE.pb jd l1Q<Z %系统焦距及各镜间距输入,间距取负正负 |`s}PcV mW1Sd#0 f=input('f:'); Ol9U^ d1=input('d1:'); FFbMG:>: d2=input('d2:'); q?8MKf[N d3=input('d3:'); v6oPAqj,r G#5Cyu<r! A=f^2/(d3*d2)-f/d1; @S?.`o B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); /}2
bsiJT C=d3/d2-f/d1; T =3te|fv -6~*:zg, a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 &[*_ - a2=d3/(a1*f);%α2 7EY~5U/4 b2=a1*(1-a2)*f/d2;%β2 7oF`Os+U b1=(1-a1)*f/(d1*b2);%β1 nX5*pTfjL3 #i ?@S$ ce2d)FG}e %曲率半径 (J.(Fl>^ qS&PMQ"$ R1=2*f/(b1*b2) .`Z{ptt> R2=2*a1*f/(b2*(1+b1)) >1pD'UZIy7 R3=2*a1*a2*f/(1+b2) 90sM S]a B_hob A1=b2^3*(a1-1)*(1+b1)^3; E}k#-+u<S4 B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Sx;zvc C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; Q[J,j+f< ?MKf=!w A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); KblOP{I B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); KrMIJA4> C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); }S*6+4 ^eM=h CB=[C1 B1;C2 B2]; )@eBe^ AB=[A1 B1;A2 B2]; PC\Xm,, AC=[A1 C1;A2 C2]; lUUq|Qr +D?d)lK %非球面系数 {Hp?rY@ k2=-(det(CB)/det(AB)); n,PHfydqX k3=-(det(AC)/det(AB)); &M>S$+I
n k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 "oz@w'rG k2=k2 ,Lv}Xku k3=k3 (ZShh y8g =#BeAsFfO end 82$By]Y9 b8b-M]P-= %有中间像,焦距输入为正数 $k'f)E $nn~K function sjr=yfdre(~) JTx}{kVO U&u7d$AN P f=input('f:');
dZ%b|CUb d1=input('d1:'); ljiq +tT d2=input('d2:'); H kg@M?( d3=input('d3:'); H5&>Eny |o!<@/iH= A=f^2/(d3*d2)-f/d1; tH_#q"@) B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); EHzZ9zH\ C=d3/d2-f/d1; `b\4h/~ ~%<PEl| a1=(-B-sqrt(B^2-4*A*C))/(2*A); M<ad>M a2=d3/(a1*f); 2CmeO&(Qf* b2=a1*(1-a2)*f/d2; gKYn* b1=(1-a1)*f/(d1*b2); o8s&n3mY}y ~B=\![ %曲率半径 UD9h5PgT dtF6IdAf R1=2*f/(b1*b2) 2Cr+Z(f R2=2*a1*f/(b2*(1+b1)) RLKO0 # R3=2*a1*a2*f/(1+b2) dtg Ja_ 8U;!1!+
7) A1=b2^3*(a1-1)*(1+b1)^3; aLsGden| B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; vi5~ Rd` C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; spl*[ d s &.Z;X A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); qL'3MY.! B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 0I#<-9&d- C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); PN.6BJvu 3zl!x CB=[C1 B1;C2 B2]; i44:VR| AB=[A1 B1;A2 B2]; >#q|Pjv] AC=[A1 C1;A2 C2]; 9723f1&Vd ?BLOc;I&a %二次系数 3YLnh@- JQtH},Tr k2=-(det(CB)/det(AB)); plf<O5' k3=-(det(AC)/det(AB)); ;8T<L[ ^U k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 WEsH@
[ k2=k2 .Z^g
7 *s k3=k3 JBwTmOvQ !3b%Q</M H end
|
|