songshaoman |
2020-05-25 15:25 |
在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解
%无中间像,焦距输入为负数 OQh36BM function sjr=nfdre(~) AOaf ,ZF
8 uXNf)?MpA %系统焦距及各镜间距输入,间距取负正负 Hvq< _&2 oLn| UWe_ f=input('f:'); (;T;?v`- d1=input('d1:'); IfZaK([ d2=input('d2:'); ;6 1m d3=input('d3:');
1Nk}W!v Ffm Q$>S A=f^2/(d3*d2)-f/d1; o+O\VNW B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); vAJfMUlP C=d3/d2-f/d1; [21tT/ A_%}kt
(6 a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 b['TRYc=: a2=d3/(a1*f);%α2 *0R=(Gy b2=a1*(1-a2)*f/d2;%β2 {Pg7IYjH b1=(1-a1)*f/(d1*b2);%β1 i
c]f o _pNUI{De DrltxI) %曲率半径 Y#6@0Nn[G xL>0&R R1=2*f/(b1*b2) U&Ay3/ R2=2*a1*f/(b2*(1+b1)) 7Hpsmfm R3=2*a1*a2*f/(1+b2) va;d[D,
wrn[q{dX A1=b2^3*(a1-1)*(1+b1)^3; _jZDSz|Yb B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; X5U!25d] C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; 2.&v{gq jVRd[ A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); ^B& Z B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); `bT{E.(T C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); YQN=.Wtc .(S,dG0P CB=[C1 B1;C2 B2]; 6XQ)Q)
AB=[A1 B1;A2 B2]; 317Buk AC=[A1 C1;A2 C2]; nfDPM\FFD :M3l#`4Q %非球面系数 8d)F# k2=-(det(CB)/det(AB)); rP`\<}a. k3=-(det(AC)/det(AB)); Y+?bo9CES! k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 $zmES tcm k2=k2 Ky nZzR k3=k3
5Ll[vBW :`
~b&Oz) end =,@SZsM*B +Kq>r|; %有中间像,焦距输入为正数 7FDraEr#f 1C$^S]v%a function sjr=yfdre(~) Z^fF^3x }(tGjx] f=input('f:'); Tz*5;y%4 d1=input('d1:'); !)9zH d2=input('d2:'); ',!#?aGV d3=input('d3:'); ao-C9|2>NU #Y18z5vo A=f^2/(d3*d2)-f/d1; 6:EO B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); I$mOy{/# C=d3/d2-f/d1; p[o2F5 T2 [
objdQU` a1=(-B-sqrt(B^2-4*A*C))/(2*A); <![T~<. a2=d3/(a1*f); r>)\"U# b2=a1*(1-a2)*f/d2; [U jbox b1=(1-a1)*f/(d1*b2); MJg^
QVM Q49|,ou[H %曲率半径 "Z{^i3gN g{J3Ba R1=2*f/(b1*b2) FD@! z
: R2=2*a1*f/(b2*(1+b1)) }dXL= ul R3=2*a1*a2*f/(1+b2) ttw@nv%
@ |;_
yAL A1=b2^3*(a1-1)*(1+b1)^3; So8P8TCK B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; u\E.H5u27 C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; Xl aNR+ O.$<Bf9
A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); df:,5@CJ8 B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); m|7g{vHVV C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 'qM3.U q/3}8BJ CB=[C1 B1;C2 B2]; ^Ue.9#9T&g AB=[A1 B1;A2 B2]; FCe503qND$ AC=[A1 C1;A2 C2]; SUVr&S6Nk iK#{#ebAoW %二次系数 ry<
P LRN ;% !?dH6 k2=-(det(CB)/det(AB)); =_1" d$S& k3=-(det(AC)/det(AB)); ~xJD3Qf k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 B#DV<%GPl k2=k2 4Ek<
5s[ k3=k3 -12v/an]L7 d}=p-s.GA end
|
|