SYNOPSYS 光学设计软件课程二十四:带楔块误差的校验和图像误差的AI分析的公差实例
v7hw% 9(= ]vV)$xMX 本课程将介绍前面讨论的一些功能,并添加一些功能强大的新选项。 在这里,我们将使用BTOL来计算八片式透镜的公差,然后查看通过校验单元格中的元件来补偿楔形误差的情况下的像质统计。 最后,我们将在重新对焦镜头和校验元件之后,检查一组100个镜头的横向色差的统计数据,这些镜头受公差限制。 (KPD`l8. 这是一个MACro,它将创建公差预算: GZuWAa FETCH X33 ! Get out the starting lens. Vvfd?G" BTOL 90 ! Ask for 90% confidence level. 7.)_H TPR ALL ! All surfaces are matched to testplates. AG;KXL[V EXACT ALL INDEX ! Assume melt data are received, U1rr=h
g EXACT ALL VNO ! so the index and dispersion tolerances are zero. zITxJx TOL WAF .18 .32 .18 ! Ask for this wavefront variance at three field points. (_3'nFg FOCUS REAL ! Focus the on-axis image point cc1M9kVi ADJUST 14 TH 100 ! with thickness 14 (the last airspace). /+ais3 PREP MC ! Prepare the input for Monte-Carlo evaluation.
MpJ\4D5G GO ! Start BTOL. '0o^T 7C cT&lkS 在SYNOPSYS™中打开名为X33.RLE的文件,我们使用FETCH命令将其取出。 YuJ{@"H 运行此MACro时,BTOL公差已准备好并列在探测器上。 现在我们需要使用MC。 调整MACro由BTOL准备,命名为MCFILE.MAC。 让我们看看它包含什么。 我们输入LM MCFILE来加载MACro: 1M55!b PANT %uiCC>cC VY 14 TH hl)jE
06 END 3rJ LLYR AANT tWaGCxaE M 0.000000E+00 0.3333 A 2 XC 0.000 0 .1 0.000 F,K))325 M 0.297953E-05 0.3333 SR A 2 YC 0.000 0 .1 0.000 Z0XQ|gkH M 0.000000E+00 0.3333 A 2 XC 0.000 0 -.1 0.000 ,C_MB1u M -0.297953E-05 0.3333 SR A 2 YC 0.000 0 -.1 0.000 nYvkeT M 0.297953E-05 0.3333 A 2 XC 0.000 .1 0 0.000 d@b2XCh<K M 0.000000E+00 0.3333 SR A 2 YC 0.000 .1 0 0.000 qwn EVjf M -0.297953E-05 0.3333 A 2 XC 0.000 -.1 0 0.000 [a~@6*= M 0.000000E+00 0.3333 SR A 2 YC 0.000 -.1 0 0.000 _~P&8 M -0.177180E-02 0.3333 A 2 XC 0.000 -.64 .64 0.000 pbwOma2 M 0.177180E-02 0.3333 SR A 2 YC 0.000 -.64 .64 0.000 ,4-],~T M 0.177180E-02 0.3333 A 2 XC 0.000 .64 .64 0.000 FlrY Xau M 0.177180E-02 0.3333 SR A 2 YC 0.000 .64 .64 0.000 ;WrG\R/| M 0.177180E-02 0.3333 A 2 XC 0.000 .64 -.64 0.000 id`RscV] M -0.177180E-02 0.3333 SR A 2 YC 0.000 .64 -.64 0.000 ^'+#BPo9@ M -0.177180E-02 0.3333 A 2 XC 0.000 -.64 -.64 0.000 DPmY_[OAE M -0.177180E-02 0.3333 SR A 2 YC 0.000 -.64 -.64 0.000 M[-/ &;`f@ M 0.000000E+00 0.6667 A 3 XC 0.000 0 0. 0.000 vI48*&]wTf M 0.000000E+00 0.6667 A 3 YC 0.000 0 0. 0.000 fgF@ x M 0.000000E+00 0.6667 A 3 XC 0.000 0 .1 0.000 t!B,%,Dp M 0.149918E-03 0.6667 A 3 YC 0.000 0 .1 0.000 \.P#QVuQ M 0.000000E+00 0.6667 A 3 XC 0.000 0 -.1 0.000 vv5rA 6+ M -0.149918E-03 0.6667 A 3 YC 0.000 0 -.1 0.000 0r!F]Rm-^ M 0.149918E-03 0.6667 A 3 XC 0.000 .1 0. 0.000 g1l:k1\Ht M 0.000000E+00 0.6667 A 3 YC 0.000 .1 0. 0.000 '[_.mx|cd` M -0.149918E-03 0.6667 A 3 XC 0.000 -.1 0 0.000 ]'hel#L;l M 0.000000E+00 0.6667 A 3 YC 0.000 -.1 0 0.000 iex]J@=e END N1x~-2( SYNOPSYS 10 ^6Yt2Bhs MC xnw' &E {aK3'-7 根据要求,PANT文件中的最后一个空气间隔是变化的,并且AANT文件定义了一个评价函数,如果调整能够恢复名义设计完全相同的光线模式,它将精确地收敛到零。 现在我们需要准备我们的MC MACro。 (这是我们指定所需蒙特卡罗分析的文件,而上面显示的文件MCFILE.MAC指定了我们想要在每个案例上运行的调整。它们是单独的文件。) 4((p?jbC 首先,我们将使用随机楔形方向运行MC。 这是MACro: \SYeDy MC ITEMIZE 4TiHh SAMPLES 1 ! One case, please. *#?9@0b@ LIBRARY 5 ! We saved the initial lens in library location 5. ]j$(so" j*GS')Cm WORST ALL 1 ! Later we may want to see a worst case. wCj)@3F THSTAT UNIFORM ! Uniform thickness statistics. A
;|P\V WEDGES RANDOM ! Wedges have random orientation. EyBTja(4 TEST ! Let’s just look at a perturbed example. |X6R2I GO ! Run MC. ,WW=,P E7B?G3|z3 在这里,我们不优化任何东西,只是准备一个单一的扰动示例,以便我们可以检查它。 (元件现在都有楔形误差,因此PAD显示不能像以前那样为元件着色。) AOV{@b( 好吧,让我们运行一组100个镜头并查看统计数据。 首先我们GET 5,然后注释掉TEST指令并更改样本编号。 QXy=| MC ITEMIZE Y%r>=Jvu6 SAMPLES 100 ! Ask for a set of 100 lenses. "%_T7A ![ LIBRARY 5 qamq9F$V QUIET cBZJ WORST ALL 1 13Q87i5B THSTAT UNIFORM 1jPh0?BY WEDGES RANDOM G}}Lp~ !TEST GO VT#`l0I} - _%~b 当MC完成时,我们将获得MC PLOT的统计图。 TDy$Mv=y 我们继续操作,更改我们的MACro如下: EV|W:;Sg MC ITEMIZE l$R9c+L= SAMPLES 100 OcC|7s", LIBRARY 5 l%2 gM7WMY QUIET hyhm{RC?[ WORST ALL 1 f9d{{u THSTAT UNIFORM rc"8N<D WEDGES CLOCK ! Clock the wedge errors for each case. um( xZ6&m TEST ! Again make a single TEST case. wuSotbc/ GO h1f 05 ~JS@$ # 现在,程序将使用GROUP而不是RELATIVE倾斜,使用不同的协议对元件倾斜进行建模。 这释放了每个元件上的gamma倾斜,用于引起楔形误差。 我们要测试一个例子,以便我们可以检查错误是如何定义的。 执行此操作后,我们会查看扰动镜头的ASY列表: }-9 c1&m TILT AND DECENTER DATA X7tBpyi LEFT-HANDED COORDINATES 1/?K/gL _______________________________________________________________________________ 2j]uB0 SURF TYPE X Y Z ALPHA BETA GAMMA kcMg`pJ4< _______________________________________________________________________________ TILT OR DECENTER GROUP SIZE: 3 ^D ;EbR 1 GROUP 0.00358 -0.00501 0.00000 0.0142 0.0000 0.0000 ;Qc^xIPy 2 REL 0.00000 0.00000 0.00000 -0.0088 0.0000 0.0000 g{kjd2 3 REL 0.00000 0.00000 0.00000 0.0112 0.0000 0.0000 TILT OR DECENTER GROUP SIZE: 2 K\mFb 5 GROUP -0.00977 -0.00652 0.00000 0.0749 0.0000 0.0000 g\iSc~%? 6 REL 0.00000 0.00000 0.00000 0.0000 0.0235 0.0000 k_gl$`A TILT OR DECENTER GROUP SIZE: 2 0eK>QZ_ 7 GROUP -0.01686 0.02519 0.00000 0.0701 0.0000 0.0000 M<Dvhy[ 8 REL 0.00000 0.00000 0.00000 0.0000 -0.0103 0.0000 TILT OR DECENTER GROUP SIZE: 3 M.EL^;r 9 GROUP -0.01049 -0.02937 0.00000 0.0000 0.0462 0.0000 7>AMzNj 10 REL 0.00000 0.00000 0.00000 0.0000 0.0183 0.0000 i#*lK7 11 REL 0.00000 0.00000 0.00000 -0.0140 0.0000 0.0000 TILT OR DECENTER GROUP SIZE: 3 by,3A 12 GROUP 0.00107 -0.02203 0.00000 0.0000 0.0215 0.0000 e ]{=#
13 REL 0.00000 0.00000 0.00000 -0.0291 0.0000 0.0000 =&DuQvN, 14 REL 0.00000 0.00000 0.00000 0.0198 0.0000 0.0000 15 REL 0.00000 0.00000 0.00000 0.0000 0.0060 0.0000 m5,&;~ QpS7nGev 从该列表中我们看到表面1,5,7,9和12已经被分配了组倾斜。 除了表面1上的gamma倾斜之外,我们将改变所有这些,这提供了参考方向。 $)6M@S 好的,我们需要修改我们的文件MCFILE.MAC,添加gamma倾斜变量。 我们也选择在进行更复杂的优化时进行。 然后我们保存新的MACro,以便MC能够打开它并查看更改。 它看起来像这样: ##Qy6Dc PANT sN MF(TY VY 14 TH f=7[GZoDn VY 5 GPG ! Vary group gamma tilt on surfaces 5, 7, 9, and 12 (but not surface 1). VY 7 GPG 7=qvu&{ VY 9 GPG x]4>f[>*> VY 12 GPG u
Qg$hS END ,H$%'s1I( J\J3'u AANT 7)FYAk$@ M 0 1 A P YA ! Control the boresight error this way. ]x%sX|Rj M 0 1 A P XA lfr^NxO U GSR .5 10 5 M 0 0 0 F ! Correct over the full pupil since the lens no longer has cu)B!#<!& GNR .5 2 3 M .7 0 0 F )d|s$l$?7 GNR .5 1 3 M 1 0 0 F ! bilateral symmetry. =CjWPZShV 0+.<BOcW5 GNR .5 2 3 M -.7 0 0 F ! For the same reason we also control the negative field. JcfGe4 GNR .5 1 3 M -1 0 0 F W[>qiYf^b END )lJi7 ^, SYNOPSYS 10 d\8j!F^= MC a=6@} l1< _!w69>Nj 当我们运行它时,我们得到改进的统计数据: Rv.IHSQUo 该课程几乎已经完成 - 但是假设这个镜头必须用于能很好地控制横向色差的设备中。 我们想知道每种情况优化后产生的像差的统计数据。 我们在文件MCFILE.MAC中添加了一些AI输入,现在读取如下: $P2*qpqy PANT $-s8tc( VY 14 TH VY 5 GPG VY 7 GPG VY 9 GPG VY 12 GPG NiRb:F- END +&E\w,Vq^ AANT a^Q
?K\c4N M 0 1 A P YA M 0 1 A P XA GSR .5 10 5 M 0 0 0 F GNR .5 2 3 M .7 0 0 F GNR .5 1 3 M 1 0 0 F GXRW"4eF5 t oM+Bd:Y GNR .5 2 3 M -.7 0 0 F GNR .5 1 3 M -1 0 0 F #<#-B v END 9 aK U}y SYNOPSYS 10 UXwI?2L Z1 = XA IN COLOR 1 ! Get the actual X coordinate of the chief ray in color 1.获取主光线的实际X坐标设置颜色为1。 D<WGau2H RMS 1 0 555 ! Run the RMS command, which also finds the centroid. 7 ;2>kgf~ Z2 = FILE 4 ! This is the X-centroid location, relative to the chief ray, 这是相对于主光线的X质心位置, Q:'r
p Z3 = FILE 5 ! and this is the Y.这就是Y. S@TfZ3Go| Z4 = YA IN COLOR 1 ! Also get the actual Y coordinate. 也获得实际的Y坐标。 cyh;1Q <$C3]
=2 Z5 = XA IN COLOR 3 ! Do the same thing in color 3.做同样的事情标记颜色为3。 .
+,{|){c RMS 3 0 555 p1T0FBV
L Z6 = FILE 4 2+*o^`%4P Z7 = FILE 5 0oqOX Z8 = YA IN COLOR 3 O[p c$Pi 64^l/D( = SQRT((Z1 + Z2 - Z5 - Z6)**2 + (Z3 + Z4 - Z7 - Z8)**2) ! The separation. 分离 IIF <Zkpb Z9 = FILE 1 ! Load it into variable Z9, and tell MC 将其加载到变量Z9中,然后告诉MC ,C:^K`k& MC IZ9 "RedCen-BlueCen" ! to gather the statistics and plot Z9 with this label. 收集统计数据并用此标签绘制Z9。 z.OJ1vY7 MC! Next case, please. 下一个例子 /"^XrVi- 8Au W>7_ 现在,当我们运行MACro时,MC将横向色差的统计数据添加到第二个绘图页面,该页面还显示调整统计数据。 \XfLTv 这是一个高级的课程,它展示了SYNOPSYS™中的一些不寻常的功能。
|