铸造生产是一种材料通过“固态-液态-固态”的转变,一次性成型来完成产品生产的工艺过程。铸造工艺设计是铸造生产的核心技术环节。材料这种通过物理状态的改变而成型的特殊性给铸造工艺设计带来了极大的困难,导致铸造工艺设计存在从设计到生产的周期长、修改次数多、设计缺少科学性等诸多问题。而计算机的迅速发展使得解决这些长期阻碍铸造生产发展的问题成为现实。 qqL :#]lV5
_2eRH@T
1铸造工艺CAD B-oQ 9[~
vD=>AAvG
随着计算机技术的迅猛发展,计算机在铸造中的应用越来越广泛。60年代初,丹麦的Forsund把Dusinberre等人在工程应用中提出的有限差分近似法第一次用于铸造凝固过程的传热计算,开始了铸件凝固的过程模拟。此后,美国Michigan大学的Marrone等人以及日本的大中逸雄等相继开始了凝固过程模拟,并取得了显著的进步。在第50届国际铸造年会举办的“凝固过程计算机模拟”专题讨论会上,深入讨论了铸件凝固过程数值模拟在研究微观组织结构和铸件性能等方面的应用,总结了凝固过程模拟所依据的一系列关系式,并设想利用这些关系式将几何模数、凝固参数、合金性能及微观组织参数等有机地联系起来,并提出了铸造工艺CAD的概念。我国从1978年开始开展铸件凝固数值模拟研究,十多年来的研究已形成了我国凝固模拟技术研究的特色。 O%g
Q
L}E~CiL0n
铸件凝固数值模拟技术发展至今可分为3个阶段:①基础研究阶段,着重于计算模拟;②预测研究阶段,对拟定好的工艺方案进行检查,以预测质量,并通过模拟浇注来修改方案;③优化工艺设计,包括计算模拟、几何模拟及数据库,并使之有机结合起来。有时把这3个阶段综合称为铸造工艺CAD,有时又特指为第三阶段。目前就国外而言,铸造工艺CAD正处在第三阶段。因此,在实际研究中铸造工艺CAD应包括4个部分,即:凝固过程数值模拟(热场模拟)、充型过程数值模拟(流场模拟)、热应力及残余热应力数值模拟(力场模拟)和微观模拟(组织模拟)。 :bh#,]'
0rt@4"~~w
2铸造工艺CAD的现状及应用 _JVFn=
n{d0}N=
2.1铸造工艺CAD的现状 aC\O'KcH
9j0Hvo% T
目前,国内外铸造工艺CAD方面的研究已达到了相当的水平,并已逐步进入实用化阶段。这主要反映在以下3个方面。 m*Zq3j
$+ z3
(1)前置处理 W'|NYw_B
4LEWOWF}
根据实际物体的结构和形状建立实体模型,并自动剖分为多面体单元。一般来讲,对于形状简单的铸件,通常采用二维的方法近似地进行数值模拟就可得到较为精确的结果。而对于结构复杂的铸件,则需三维模拟计算才能满足精度的要求。 kLsp0%2
<Km
^>9
(2)中央处理 `!`g&:Y
Jy#c 6
中央处理是数值模拟的核心,通过数值模拟计算法对热平衡方程进行解析和缩孔缩松的预测判断,同时也可通过求解Navier-Stokes方程来模拟充型过程等。 \kDQ[4mGq
6:fHPlqW
(3)后置处理 y*F !k{P
;6 ?a8t@
后置处理是将计算的结果经分析后通过彩色图形或图象等方式动态地表示出来。如用二维方式显示铸件某一断面或某点的温度-时间动态曲线图,用三维方式显示铸件的温度变化、缩孔缩松的形成、或是反映铸件的应力场分布等。 Re=()M
%DK0s(*w0
由于现在的许多软件具有很强的前后置处理功能,因此,通过前置-中央-后置处理,可以连续地完成对铸件的三维造型、网格自动剖分;在给定的初始条件和边界条件下,进行数值模拟计算,然后按使用者的要求,显示出铸件的三维温度场、应力场,甚至包括固相率场等,使得设计者可以很快得到在此工艺条件下所生产铸件的质量,并通过模拟结果对工艺进行修改,以满足铸件质量的要求。 e=>:(^CS
FAkrM?0/
2.2铸造工艺CAD的应用 1zGD~[M
C+0MzfLgf
80年代以来,数值模拟技术得到了飞速的发展。一方面由于研究过程中不断建立新的数学模型和各种判据,使模拟计算结果不断近似于实测结果,另一方面,由于凝固基础理论研究所取得的新成果,使宏观模拟计算与微观的结晶过程有机结合成为可能,并也取得了突破性的成果。就铸造工艺CAD的应用而言,主要有以下几方面。 pZ_zyI#wx_
YiO3.+H
(1)铸件凝固过程的数值模拟 2)~`.CD?L
[P'"|TM[~
铸件凝固过程的数值模拟是通过计算温度场的温度梯度、固相率凝固时间等,用一系列准则来预测铸件在凝固过程中产生缩孔缩松的部位及大小、产生的时间等。通过这种预测可对所制定的铸造工艺方案进行修改,再通过数值模拟进行验证。利用凝固数值模拟的方法确定了获得健全铸件时内浇口与铸件的关系 fH@P&SX