中国科大在偏微分方程和复几何领域取得重要突破
近日,中国科大几何与物理研究中心创始主任陈秀雄教授在偏微分方程和复几何领域取得重要“里程碑式结果”。他与合作者程经睿完成的关于一类四阶完全非线性椭圆方程的先验估计和凯勒流形上有关卡拉比极值度量若干著名猜想的两篇论文先后发表在国际著名杂志 Journal of American Mathematical Society上。论文解决了若干有关凯勒流形上常标量曲率度量和卡拉比极值度量的著名问题,包括长期未决的强制性猜想和测地稳定性猜想,将对几何和偏微分方程的研究产生重要的影响。同行专家评论,上述工作“属于凯勒几何里最重要结果中的上乘之作”“必将成为几何和分析两个领域经典”。 美国数学家克劳德·勒布润评价“该系列论文是复微分几何领域一个非凡的、根本的、完全出乎意料的进展。这些卓越的工作应该会在数学的其它领域包括与复微分几何相去甚远的领域产生影响。”法国科学院院士吉恩-皮埃尔·德玛依认为“他们的结果看来是对当代复微分几何一个极其重要的贡献。”美国科学院院士布莱恩·劳森评价道“陈和程最近的系列论文令人惊叹,诚为该领域一个实质性的突破。他们做出的先验估计前所未见,乃绝佳力作,并在此估计的基础上,获得了一系列重要结果。” 凯勒流形上的常标量曲率度量的存在性是过去六十多年来几何中的核心问题之一,它的研究吸引了几代杰出的几何分析学家。关于其存在性,有三个著名的猜想——稳定性猜想、强制性猜想和测地稳定性猜想。稳定性猜想限制在凯勒-爱因斯坦度量时称为丘成桐猜想,由丘成桐于上世纪九十年代提出,并由陈秀雄、唐纳森和孙崧率先解决。强制性猜想和测地稳定性猜想中的必要性,经过最近二十多年众多著名数学家的工作,已变得完全清晰。然而,其充分性的证明在陈-程的工作之前被认为是遥不可及的。 |




